Orthogonal projectors and systems of linear algebraic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 315-324
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, an operator iterative procedure for constructing of the orthogonal projection of a vector on
a given subspace is proposed. The algorithm is based on the Euclidean ortogonalization of power sequences of
a special linear transformation generated by the original subspace. For consistent systems of linear algebraic
equations, a numerical method based on this idea is proposed. Numerical results are presented.
@article{SJVM_2020_23_3_a5,
author = {I. V. Kireev},
title = {Orthogonal projectors and systems of linear algebraic equations},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {315--324},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/}
}
I. V. Kireev. Orthogonal projectors and systems of linear algebraic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 315-324. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/