Orthogonal projectors and systems of linear algebraic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 315-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an operator iterative procedure for constructing of the orthogonal projection of a vector on a given subspace is proposed. The algorithm is based on the Euclidean ortogonalization of power sequences of a special linear transformation generated by the original subspace. For consistent systems of linear algebraic equations, a numerical method based on this idea is proposed. Numerical results are presented.
@article{SJVM_2020_23_3_a5,
     author = {I. V. Kireev},
     title = {Orthogonal projectors and systems of linear algebraic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {315--324},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/}
}
TY  - JOUR
AU  - I. V. Kireev
TI  - Orthogonal projectors and systems of linear algebraic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 315
EP  - 324
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/
LA  - ru
ID  - SJVM_2020_23_3_a5
ER  - 
%0 Journal Article
%A I. V. Kireev
%T Orthogonal projectors and systems of linear algebraic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 315-324
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/
%G ru
%F SJVM_2020_23_3_a5
I. V. Kireev. Orthogonal projectors and systems of linear algebraic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 315-324. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/

[1] V. V. Voevodin, YU. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984 | MR

[2] P. S. Aleksandrov, Lektsii po analiticheskoi geometrii, Lan, SPb, 2008

[3] I. V. Kireev, “Ortogonal'no-stepennoi metod resheniya chastichnoi problemy sobstvennyh znachenii i vektorov dlya simmetrichnoi neotritsatel'no opredelennoi matritsy”, Vychislitel'nye metody i programmirovanie, 17:1 (2016), 44–54

[4] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM Society for Industrial Applied Mathematics, 2003 | MR | Zbl

[5] A. Galàntai, “Subspaces, angles and pairs of orthogonal projections”, Linear and Multilinear Algebra, 56:3 (2008), 227–260 | DOI | MR | Zbl

[6] G. E. Shilov, Matematicheskii analiz. Konechnomernye lineinye prostranstva, Nauka, M., 1969

[7] I. V. Kireev, “Ekonomichnye kriterii ostanova iteratsii v metode sopryazhennyh gradientov”, Vychislitelnye tekhnologii, 20:2 (2015), 44–55 | Zbl

[8] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, DOVER PUBLICATIONS, New York, 1992 | MR

[9] S. Kaczmarz, “Angen-aherte auflösung von systemen lineare Gleichungen”, Bull. Intern. Acad. Polonaise Sci. Lett., 35 (1937), 355–357

[10] Babenko V. N., “The convergency of the Kaczmarz projection algorithm”, USSR Computational Mathematics and Mathematical Physics, 24:5 (1984), 179–181 | DOI | MR | Zbl

[11] Il'in V.P., “On the Kaczmarz iterative method and its generalizations”, J. Appl. Ind. Math., 2 (2008), 357–366 | DOI | Zbl

[12] V. P. Il'in, “O proektsionnyh metodah v podprostranstvah Krylova”, Zapiski nauchnyh seminarov POMI, 472, 2018, 103–119

[13] J. Liu, S. J. Wright, “An accelerated randomized Kaczmarz algorithm”, Math. Comp., 85 (2016), 153–178 | DOI | MR | Zbl

[14] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, 37, Springer Science+Business Media, New York, 2007 | MR | Zbl

[15] J. Liesen, Z. Strakos, Krylov Subspace Methods: Principles and Analysis, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013 | MR | Zbl

[16] H. Le Dret, B. Lucquin, Partial Differential Equations: Modeling, Analysis and Numerical Approximation, International Series of Numerical Mathematics, Springer, 2016 | DOI | MR | Zbl

[17] R. Z. Dautov, M. M. Karchevskii, Vvedenie v teoriyu metoda konechnyh elementov, Uchebnoe posobie, KGU, Kazan, 2004

[18] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, Oxford Science Publication, 1999 | MR | Zbl