Orthogonal projectors and systems of linear algebraic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 315-324

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an operator iterative procedure for constructing of the orthogonal projection of a vector on a given subspace is proposed. The algorithm is based on the Euclidean ortogonalization of power sequences of a special linear transformation generated by the original subspace. For consistent systems of linear algebraic equations, a numerical method based on this idea is proposed. Numerical results are presented.
@article{SJVM_2020_23_3_a5,
     author = {I. V. Kireev},
     title = {Orthogonal projectors and systems of linear algebraic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {315--324},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/}
}
TY  - JOUR
AU  - I. V. Kireev
TI  - Orthogonal projectors and systems of linear algebraic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 315
EP  - 324
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/
LA  - ru
ID  - SJVM_2020_23_3_a5
ER  - 
%0 Journal Article
%A I. V. Kireev
%T Orthogonal projectors and systems of linear algebraic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 315-324
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/
%G ru
%F SJVM_2020_23_3_a5
I. V. Kireev. Orthogonal projectors and systems of linear algebraic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 315-324. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a5/