Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_2_a8, author = {V. P. Tanana}, title = {On reducing the inverse boundary value problem to the synthesis of two ill-posed problems and their solution}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {219--232}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a8/} }
TY - JOUR AU - V. P. Tanana TI - On reducing the inverse boundary value problem to the synthesis of two ill-posed problems and their solution JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 219 EP - 232 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a8/ LA - ru ID - SJVM_2020_23_2_a8 ER -
%0 Journal Article %A V. P. Tanana %T On reducing the inverse boundary value problem to the synthesis of two ill-posed problems and their solution %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 219-232 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a8/ %G ru %F SJVM_2020_23_2_a8
V. P. Tanana. On reducing the inverse boundary value problem to the synthesis of two ill-posed problems and their solution. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 219-232. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a8/
[1] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Ekstremal'nye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR
[2] V. P. Tanana, “Ob optimal'nosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matem., 7:2 (2004), 117–132 | MR | Zbl
[3] Tanana V.P., “An order-optimal method for solving an inverse problem for a parabolic equation”, Num. Anal. Appl., 3:4 (2010), 367–380 | DOI | MR | MR | Zbl
[4] V. P. Tanana, A. I. Sidikova, “O garantirovannoi otsenke tochnosti priblizhennogo resheniya odnoi obratnoi zadachi teplovoi diagnostiki”, Tr. IMM UrO RAN, 16, no. 2, 2010, 1–15
[5] A. N. Tikhonov, “O regulyarizatsii nekorrektno postavlennykh zadach”, DAN SSSR, 153:1 (1963), 9–52 | MR
[6] M. M. Lavrent'ev, “O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki”, SO AN SSSR, Novosibirsk, 1962
[7] V. K. Ivanov, “O nekorrektno postavlennykh zadachakh”, Mat. sbornik, 61:2 (1963), 211–213
[8] D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind”, J. Assoc. Comput. Mach., 9:1 (1962), 84–97 | DOI | MR | Zbl
[9] V. K. Ivanov, “O priblizhennom reshenii operatornykh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 6:6 (1966), 1089–1094
[10] Morozov V.A., “Regularization of incorrectly posed problems and the choice of regularization parameter”, U.S.S.R. Comput. Math. Math. Phys., 6:1 (1966), 242–251 | DOI | MR | Zbl
[11] Ivanov V.K., Korolyuk T.I., “Error estimates for solutions of incorrectly posed linear problems”, U.S.S.R. Comput. Math. Math. Phys., 9:1 (1969), 35–49 | DOI | MR | Zbl
[12] V. P. Tanana, “Ob optimal'nosti metodov resheniya nelineinykh neustoichivykh zadach”, DAN SSSR, 220:5 (1975), 1035–1037 | Zbl
[13] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of Linear Ill-Posed Problems and its Applications, VSP, Netherland, 2002 | MR | Zbl
[14] V. P. Tanana, T. N. Rudakova, “The optimum of the M.M. Lavrent'ev method”, J. of Inverse and Ill-Posed Problems, 18 (2011), 935–944 | DOI | MR
[15] V. P. Tanana, A. I. Sidikova, Optimal Methods for Ill-Posed Problems with Applications to Heat Conduction, De Gruyter, 2018 | MR | Zbl
[16] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsional'nogo analiza, Nauka, M., 1989