A family of solutions of the two-dimensional
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 155-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The propagation of a wave from the point source in the case when the velocity in the medium $v$ is expressed as $v=\frac1{\sqrt{y}}$ is considered. Exact solutions of the corresponding eikonal equation are obtained and numerically verified. The ambiguity of the solution to this question in the case when the point source is situated at the origin is shown.
@article{SJVM_2020_23_2_a4,
     author = {An. G. Marchuk and E. D. Moskalensky},
     title = {A family of solutions of the two-dimensional},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {155--164},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/}
}
TY  - JOUR
AU  - An. G. Marchuk
AU  - E. D. Moskalensky
TI  - A family of solutions of the two-dimensional
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 155
EP  - 164
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/
LA  - ru
ID  - SJVM_2020_23_2_a4
ER  - 
%0 Journal Article
%A An. G. Marchuk
%A E. D. Moskalensky
%T A family of solutions of the two-dimensional
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 155-164
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/
%G ru
%F SJVM_2020_23_2_a4
An. G. Marchuk; E. D. Moskalensky. A family of solutions of the two-dimensional. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 155-164. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/

[1] Smirnov V.I., A Course of Higher Mathematics, v. 1–5, Pergamon Press, New York–Oxford, 1964 | MR | MR

[2] Moskalensky E.D., “The novel class of exact solutions of the two-dimensional eiconal equation when the velocity in a medium depends on one spatial coordinate”, Numerical Analysis and Applications, 11:3 (2018), 208–219 | DOI | MR | Zbl

[3] A. V. Borovskikh, “Dvumernoe uravnenie eikonala”, Sib. mat. zhurnal, 47:5 (2006), 993–1018 | MR | Zbl

[4] An. G. Marchuk, “Minimizatsiya pogreshnostei pri chislennykh raschetakh volnovykh luchei i frontov tsunami”, Vestnik NGU. Seriya: Informatsionnye tekhnologii, 11:3 (2013), 27–36

[5] Stocker J.J., Water Waves. The Mathematical Theory with Applications, Interscience Publishers, New York, 1957 | MR