A family of solutions of the two-dimensional
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 155-164
Voir la notice de l'article provenant de la source Math-Net.Ru
The propagation of a wave from the point source in the case when the velocity in the medium $v$ is expressed as $v=\frac1{\sqrt{y}}$ is considered. Exact solutions of the corresponding eikonal equation are obtained and numerically verified. The ambiguity of the solution to this question in the case when the point source is situated at the origin is shown.
@article{SJVM_2020_23_2_a4,
author = {An. G. Marchuk and E. D. Moskalensky},
title = {A family of solutions of the two-dimensional},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {155--164},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/}
}
An. G. Marchuk; E. D. Moskalensky. A family of solutions of the two-dimensional. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 155-164. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/