Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_2_a4, author = {An. G. Marchuk and E. D. Moskalensky}, title = {A family of solutions of the two-dimensional}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {155--164}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/} }
An. G. Marchuk; E. D. Moskalensky. A family of solutions of the two-dimensional. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 155-164. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a4/
[1] Smirnov V.I., A Course of Higher Mathematics, v. 1–5, Pergamon Press, New York–Oxford, 1964 | MR | MR
[2] Moskalensky E.D., “The novel class of exact solutions of the two-dimensional eiconal equation when the velocity in a medium depends on one spatial coordinate”, Numerical Analysis and Applications, 11:3 (2018), 208–219 | DOI | MR | Zbl
[3] A. V. Borovskikh, “Dvumernoe uravnenie eikonala”, Sib. mat. zhurnal, 47:5 (2006), 993–1018 | MR | Zbl
[4] An. G. Marchuk, “Minimizatsiya pogreshnostei pri chislennykh raschetakh volnovykh luchei i frontov tsunami”, Vestnik NGU. Seriya: Informatsionnye tekhnologii, 11:3 (2013), 27–36
[5] Stocker J.J., Water Waves. The Mathematical Theory with Applications, Interscience Publishers, New York, 1957 | MR