The numerical solution of the direct Zakharov--Shabat scattering problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 117-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical solution of the direct scattering problem for a system of the Zakharov–Shabat equations is considered. Based on the Marchuk identity, a fourth order method of approximation accuracy is proposed. The numerical simulation of the scattering problem is carried out using an example of two characteristic boundary value problems with known solutions. The calculations have confirmed high accuracy of the algorithm proposed, which is necessary in a number of practical applications for optical and acoustic sensing of media in optics and geophysics applied.
@article{SJVM_2020_23_2_a1,
     author = {N. I. Gorbenko and V. P. Il'in and A. M. Krylov and L. L. Frumin},
     title = {The numerical solution of the direct {Zakharov--Shabat} scattering problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a1/}
}
TY  - JOUR
AU  - N. I. Gorbenko
AU  - V. P. Il'in
AU  - A. M. Krylov
AU  - L. L. Frumin
TI  - The numerical solution of the direct Zakharov--Shabat scattering problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 117
EP  - 125
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a1/
LA  - ru
ID  - SJVM_2020_23_2_a1
ER  - 
%0 Journal Article
%A N. I. Gorbenko
%A V. P. Il'in
%A A. M. Krylov
%A L. L. Frumin
%T The numerical solution of the direct Zakharov--Shabat scattering problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 117-125
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a1/
%G ru
%F SJVM_2020_23_2_a1
N. I. Gorbenko; V. P. Il'in; A. M. Krylov; L. L. Frumin. The numerical solution of the direct Zakharov--Shabat scattering problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 2, pp. 117-125. http://geodesic.mathdoc.fr/item/SJVM_2020_23_2_a1/

[1] L. M. Brekhovskikh, Volny v sloistykh sredakh, 2-e izd., Nauka, M., 1973

[2] N. I. Gorbenko, V. P. Il'in, L. L. Frumin, “Raschet rasseyaniya sveta na breggovskoi reshetke rekursiei transfer-matrits na neravnomernoi setke”, Avtometriya, 55:1 (2019), 40–50

[3] O. V. Belai, E. V. Podivilov, L. L. Frumin, D. A. Shapiro, “Ustoichivost' chislennogo vosstanovleniya volokonnykh breggovskikh reshetok”, Optika i spektroskopiya, 105:1 (2008), 114–121

[4] L. L. Frumin, O. V. Belay, E. V. Podivilov, D. A. Shapiro, “Efficient numerical method for solving the direct Zakharov–Shabat scattering problem”, J. Oct. Soc. Am., 32:2 (2015), 209–295

[5] G. I. Marchuk, Metody rascheta yadernykh reaktorov, Atomizdat, M., 1958

[6] V. P. Il'in, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, Izd-vo SO RAN, Novosibirsk, 2017

[7] V. P. Il'in, Chislennyi analiz, v. 1, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[8] V. P. Il'in, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo IM SO RAN, Novosibirsk, 2000