Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_1_a2, author = {A. I. Levykin and A. E. Novikov and E. A. Novikov}, title = {$(m, k)$-schemes for stiff systems of {ODEs} and {DAEs}}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {39--51}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a2/} }
TY - JOUR AU - A. I. Levykin AU - A. E. Novikov AU - E. A. Novikov TI - $(m, k)$-schemes for stiff systems of ODEs and DAEs JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 39 EP - 51 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a2/ LA - ru ID - SJVM_2020_23_1_a2 ER -
A. I. Levykin; A. E. Novikov; E. A. Novikov. $(m, k)$-schemes for stiff systems of ODEs and DAEs. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a2/
[1] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and DifferentialAlgebraic Problems, Springer-Verlag, Berlin, 1996 | MR
[2] E. A. Novikov, Yu. V. Shornikov, Komp'yuternoe modelirovanie zhestkih gibridnyh sistem, Izd-vo NGTU, Novosibirsk, 2012
[3] H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Computer, 5 (1963), 329–330 | MR | Zbl
[4] S. S. Artem'ev, G. V. Demidov, “Algoritm peremennogo poryadka i shaga dlya chislennogo resheniya zhestkih sistem obyknovennyh differencial'nyh uravnenii”, Dokl. AN SSSR, 238:3 (1978), 517–520 | MR | Zbl
[5] P. Kaps, G. Wanner, “A study of Rosenbrock-type methods of high order”, Numerische Mathematik, 38 (1981), 279–298 | DOI | MR | Zbl
[6] T. Steihaug, A. Wolfbrandt, “An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations”, Mathematics of Computations, 33 (1979), 521–534 | DOI | MR | Zbl
[7] J. G. Werwer, S. Scholz, J. G. Blom, M. Louter-Nool, “A class of Runge-Kutta-Rosenbrock methods for solving stiff differential equations”, ZAAM, 63 (1983), 13–20 | MR
[8] V. V. Voevodin, Yu. A. Kuznecov, Matricy i vychisleniya, Nauka, Novosibirsk, 1984 | MR
[9] S. P. Norsett, “Restricted Pad`e approximations to the exponential function”, SIAM J. Numer. Analysis, 15:5 (1978), 1008–1029 | DOI | MR | Zbl
[10] A. I. Levykin, Novikov E. A., “A study of $(m, k)$-methods for solving differential-algebraic systems of index $1$”, Mathematical Modeling of Technological Processes, Proc. 8th Int. Conf. CITech 2015, Communication on Computer and Information Science, 549, 2015, 94–107 | DOI
[11] M. Roche, “Rosenbrock methods for differential algebraic equations”, Numerische Mathematik, 52 (1988), 45–63 | DOI | MR | Zbl
[12] A. I. Levykin, A. E. Novikov, E. A. Novikov, “Third order $(m, k)$-method for solving stiff systems of ODEs and DAEs”, Proc. XIV Int. Scientific-Technical Conf. APEIE-2018, Part 4, v. 1, NSTU, Novosibirsk, 2018, 158–163 | MR