$(m, k)$-schemes for stiff systems of ODEs and DAEs
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 39-51
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the derivation of the optimal form of the Rosenbrock-type methods in terms of the number of non-zero parameters and computational costs per step. A technique of obtaining $(m, k)$-methods from the well-known Rosenbrock-type methods is justified. There are given formulas for the $(m, k)$-schemes parameters transformation for their two canonical representations and obtaining the form of a stability function. The authors have developed $L$-stable $(3, 2)$-method of order $3$ which requires two evaluations of a function: one evaluation of the Jacobian matrix and one $LU$-decomposition per step. Moreover, in this paper there is formulated an integration algorithm of the alternating step size based on $(3, 2)$-method. It provides the numerical solution for both explicit and implicit systems of ODEs. The numerical results confirming the efficiency of the new algorithm are given.
@article{SJVM_2020_23_1_a2,
author = {A. I. Levykin and A. E. Novikov and E. A. Novikov},
title = {$(m, k)$-schemes for stiff systems of {ODEs} and {DAEs}},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {39--51},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a2/}
}
TY - JOUR AU - A. I. Levykin AU - A. E. Novikov AU - E. A. Novikov TI - $(m, k)$-schemes for stiff systems of ODEs and DAEs JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 39 EP - 51 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a2/ LA - ru ID - SJVM_2020_23_1_a2 ER -
A. I. Levykin; A. E. Novikov; E. A. Novikov. $(m, k)$-schemes for stiff systems of ODEs and DAEs. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/SJVM_2020_23_1_a2/