Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 301-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

The presence of the nonlocal term in the nonlocal problems destroys the sparsity of the Jacobian matrices when solving the problem numerically using finite element method and Newton–Raphson method. As a consequence, computations consume more time and space in contrast to local problems. To overcome this difficulty, this paper is devoted to the analysis of a linearized Theta–Galerkin finite element method for the time-dependent nonlocal problem with nonlinearity of Kirchhoff type. Hereby, we focus on time discretization based on $\theta$-time stepping scheme with $\theta\in [1/2, 1)$. Some a error estimates are derived for the standard Crank–Nicolson ($\theta = 1/2$), the shifted Crank–Nicolson ($\theta = 1/2 + \delta$, $\delta$ is the time-step) and the general case ($\theta\ne 1/2 + k\delta$, $k = 0, 1$). Finally, numerical simulations that validate the theoretical findings are exhibited.
@article{SJVM_2019_22_3_a3,
     author = {M. Mbehou and G. Chendjou},
     title = {Numerical methods for a nonlocal parabolic problem with nonlinearity of {Kirchhoff} type},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {301--313},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/}
}
TY  - JOUR
AU  - M. Mbehou
AU  - G. Chendjou
TI  - Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 301
EP  - 313
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/
LA  - ru
ID  - SJVM_2019_22_3_a3
ER  - 
%0 Journal Article
%A M. Mbehou
%A G. Chendjou
%T Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 301-313
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/
%G ru
%F SJVM_2019_22_3_a3
M. Mbehou; G. Chendjou. Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 301-313. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/

[1] Chipot M., Lovat B., “Some remarks on non local elliptic and parabolic problems”, Nonlinear Analysis: Theory, Methods Applications, 30:7 (1997), 4619–4627 | DOI | MR | Zbl

[2] Chipot M., “The diffusion of a population partly driven by its preferences”, Archive for Rational Mechanics and Analysis, 155:3 (2000), 237–259 | DOI | MR | Zbl

[3] Mbehou M., “The Euler-Galerkin finite element method for nonlocal diffusion problems with a p-Laplace-type operator”, Applicable Analysis, 2018 | DOI | Zbl

[4] Mbehou M., Maritz R., Tchepmo P., “Numerical analysis for a nonlocal parabolic problem”, East Asian J. on Applied Mathematics, 6:4 (2016), 434–447 | DOI | MR | Zbl

[5] Lions J., “On some questions in boundary value problems of mathematical physics”, North-Holland Mathematics Studies, 30, 1978, 284–346 | DOI | MR | Zbl

[6] Arosio A., Panizzi S., “On the well-posedness of the Kirchhoff string”, Transactions of the American Mathematical Society, 348:1 (1996), 305–330 | DOI | MR | Zbl

[7] Mbehou M., Finite element method for nonlocal hyperbolic-parabolic problems of Kirchhoff-Carrier type in domains with moving boundary, Under review

[8] Ono K., “On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation”, J. of Mathematical Analysis and Applications, 216:1 (1997), 321–342 | DOI | MR | Zbl

[9] Srivastava V., Chaudhary S., Kumar V. S., Srinivasan B., “Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy”, J. of Applied and Computing, 53:1–2 (2017), 413–443 | DOI | MR | Zbl

[10] Alves C., Corrêa F., Figueiredo G., “On a class of nonlocal elliptic problems with critical growth”, Differ. Equ. Appl., 2:3 (2010), 409–417 | MR | Zbl

[11] Thomée V., “Galerkin Finite Element Methods for Parabolic Problems”, Computational Science Engineering, Lect. Notes in Mathematics, 1054, Springer, 1984 | MR | Zbl

[12] Djoko J., Lubuma J., Mbehou M., “On the numerical solution of the stationary powerlaw Stokes equations: A penalty finite element approach”, J. of Scientific Computing, 69:3 (2016), 1058–1082 | DOI | MR | Zbl

[13] Douglas J. Jr., Dupont T., “Galerkin methods for parabolic equations”, SIAM J. on Numerical Analysis, 7:4 (1970), 575–626 | DOI | MR | Zbl

[14] Ammi M. R. S., Torres D. F., “Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem”, Mathematics and Computers in Simulation, 77:2 (2008), 291–300 | DOI | MR | Zbl

[15] Mbehou M., “The theta-Galerkin finite element method for coupled systems resulting from microsensor thermistor problems”, Mathematical Methods in the Applied Sciences, 41:4 (2018), 1480–1491 | DOI | MR | Zbl

[16] Heywood J. G., Rannacher R., “Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization”, SIAM J. on Numerical Analysis, 27:2 (1990), 353–384 | DOI | MR | Zbl

[17] Luskin M., Rannacher R., Wendland W., “On the smoothing property of the Crank-Nicolson scheme”, Applicable Analysis, 14:2 (1982), 117–135 | DOI | MR | Zbl

[18] Ciarlet P., The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978 | MR | Zbl