Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2019_22_3_a3, author = {M. Mbehou and G. Chendjou}, title = {Numerical methods for a nonlocal parabolic problem with nonlinearity of {Kirchhoff} type}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {301--313}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/} }
TY - JOUR AU - M. Mbehou AU - G. Chendjou TI - Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2019 SP - 301 EP - 313 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/ LA - ru ID - SJVM_2019_22_3_a3 ER -
%0 Journal Article %A M. Mbehou %A G. Chendjou %T Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2019 %P 301-313 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/ %G ru %F SJVM_2019_22_3_a3
M. Mbehou; G. Chendjou. Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 301-313. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/
[1] Chipot M., Lovat B., “Some remarks on non local elliptic and parabolic problems”, Nonlinear Analysis: Theory, Methods Applications, 30:7 (1997), 4619–4627 | DOI | MR | Zbl
[2] Chipot M., “The diffusion of a population partly driven by its preferences”, Archive for Rational Mechanics and Analysis, 155:3 (2000), 237–259 | DOI | MR | Zbl
[3] Mbehou M., “The Euler-Galerkin finite element method for nonlocal diffusion problems with a p-Laplace-type operator”, Applicable Analysis, 2018 | DOI | Zbl
[4] Mbehou M., Maritz R., Tchepmo P., “Numerical analysis for a nonlocal parabolic problem”, East Asian J. on Applied Mathematics, 6:4 (2016), 434–447 | DOI | MR | Zbl
[5] Lions J., “On some questions in boundary value problems of mathematical physics”, North-Holland Mathematics Studies, 30, 1978, 284–346 | DOI | MR | Zbl
[6] Arosio A., Panizzi S., “On the well-posedness of the Kirchhoff string”, Transactions of the American Mathematical Society, 348:1 (1996), 305–330 | DOI | MR | Zbl
[7] Mbehou M., Finite element method for nonlocal hyperbolic-parabolic problems of Kirchhoff-Carrier type in domains with moving boundary, Under review
[8] Ono K., “On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation”, J. of Mathematical Analysis and Applications, 216:1 (1997), 321–342 | DOI | MR | Zbl
[9] Srivastava V., Chaudhary S., Kumar V. S., Srinivasan B., “Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy”, J. of Applied and Computing, 53:1–2 (2017), 413–443 | DOI | MR | Zbl
[10] Alves C., Corrêa F., Figueiredo G., “On a class of nonlocal elliptic problems with critical growth”, Differ. Equ. Appl., 2:3 (2010), 409–417 | MR | Zbl
[11] Thomée V., “Galerkin Finite Element Methods for Parabolic Problems”, Computational Science Engineering, Lect. Notes in Mathematics, 1054, Springer, 1984 | MR | Zbl
[12] Djoko J., Lubuma J., Mbehou M., “On the numerical solution of the stationary powerlaw Stokes equations: A penalty finite element approach”, J. of Scientific Computing, 69:3 (2016), 1058–1082 | DOI | MR | Zbl
[13] Douglas J. Jr., Dupont T., “Galerkin methods for parabolic equations”, SIAM J. on Numerical Analysis, 7:4 (1970), 575–626 | DOI | MR | Zbl
[14] Ammi M. R. S., Torres D. F., “Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem”, Mathematics and Computers in Simulation, 77:2 (2008), 291–300 | DOI | MR | Zbl
[15] Mbehou M., “The theta-Galerkin finite element method for coupled systems resulting from microsensor thermistor problems”, Mathematical Methods in the Applied Sciences, 41:4 (2018), 1480–1491 | DOI | MR | Zbl
[16] Heywood J. G., Rannacher R., “Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization”, SIAM J. on Numerical Analysis, 27:2 (1990), 353–384 | DOI | MR | Zbl
[17] Luskin M., Rannacher R., Wendland W., “On the smoothing property of the Crank-Nicolson scheme”, Applicable Analysis, 14:2 (1982), 117–135 | DOI | MR | Zbl
[18] Ciarlet P., The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978 | MR | Zbl