Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 301-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The presence of the nonlocal term in the nonlocal problems destroys the sparsity of the Jacobian matrices when solving the problem numerically using finite element method and Newton–Raphson method. As a consequence, computations consume more time and space in contrast to local problems. To overcome this difficulty, this paper is devoted to the analysis of a linearized Theta–Galerkin finite element method for the time-dependent nonlocal problem with nonlinearity of Kirchhoff type. Hereby, we focus on time discretization based on $\theta$-time stepping scheme with $\theta\in [1/2, 1)$. Some a error estimates are derived for the standard Crank–Nicolson ($\theta = 1/2$), the shifted Crank–Nicolson ($\theta = 1/2 + \delta$, $\delta$ is the time-step) and the general case ($\theta\ne 1/2 + k\delta$, $k = 0, 1$). Finally, numerical simulations that validate the theoretical findings are exhibited.
@article{SJVM_2019_22_3_a3,
     author = {M. Mbehou and G. Chendjou},
     title = {Numerical methods for a nonlocal parabolic problem with nonlinearity of {Kirchhoff} type},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {301--313},
     year = {2019},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/}
}
TY  - JOUR
AU  - M. Mbehou
AU  - G. Chendjou
TI  - Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 301
EP  - 313
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/
LA  - ru
ID  - SJVM_2019_22_3_a3
ER  - 
%0 Journal Article
%A M. Mbehou
%A G. Chendjou
%T Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 301-313
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/
%G ru
%F SJVM_2019_22_3_a3
M. Mbehou; G. Chendjou. Numerical methods for a nonlocal parabolic problem with nonlinearity of Kirchhoff type. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 301-313. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a3/

[1] Chipot M., Lovat B., “Some remarks on non local elliptic and parabolic problems”, Nonlinear Analysis: Theory, Methods Applications, 30:7 (1997), 4619–4627 | DOI | MR | Zbl

[2] Chipot M., “The diffusion of a population partly driven by its preferences”, Archive for Rational Mechanics and Analysis, 155:3 (2000), 237–259 | DOI | MR | Zbl

[3] Mbehou M., “The Euler-Galerkin finite element method for nonlocal diffusion problems with a p-Laplace-type operator”, Applicable Analysis, 2018 | DOI | Zbl

[4] Mbehou M., Maritz R., Tchepmo P., “Numerical analysis for a nonlocal parabolic problem”, East Asian J. on Applied Mathematics, 6:4 (2016), 434–447 | DOI | MR | Zbl

[5] Lions J., “On some questions in boundary value problems of mathematical physics”, North-Holland Mathematics Studies, 30, 1978, 284–346 | DOI | MR | Zbl

[6] Arosio A., Panizzi S., “On the well-posedness of the Kirchhoff string”, Transactions of the American Mathematical Society, 348:1 (1996), 305–330 | DOI | MR | Zbl

[7] Mbehou M., Finite element method for nonlocal hyperbolic-parabolic problems of Kirchhoff-Carrier type in domains with moving boundary, Under review

[8] Ono K., “On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation”, J. of Mathematical Analysis and Applications, 216:1 (1997), 321–342 | DOI | MR | Zbl

[9] Srivastava V., Chaudhary S., Kumar V. S., Srinivasan B., “Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy”, J. of Applied and Computing, 53:1–2 (2017), 413–443 | DOI | MR | Zbl

[10] Alves C., Corrêa F., Figueiredo G., “On a class of nonlocal elliptic problems with critical growth”, Differ. Equ. Appl., 2:3 (2010), 409–417 | MR | Zbl

[11] Thomée V., “Galerkin Finite Element Methods for Parabolic Problems”, Computational Science Engineering, Lect. Notes in Mathematics, 1054, Springer, 1984 | MR | Zbl

[12] Djoko J., Lubuma J., Mbehou M., “On the numerical solution of the stationary powerlaw Stokes equations: A penalty finite element approach”, J. of Scientific Computing, 69:3 (2016), 1058–1082 | DOI | MR | Zbl

[13] Douglas J. Jr., Dupont T., “Galerkin methods for parabolic equations”, SIAM J. on Numerical Analysis, 7:4 (1970), 575–626 | DOI | MR | Zbl

[14] Ammi M. R. S., Torres D. F., “Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem”, Mathematics and Computers in Simulation, 77:2 (2008), 291–300 | DOI | MR | Zbl

[15] Mbehou M., “The theta-Galerkin finite element method for coupled systems resulting from microsensor thermistor problems”, Mathematical Methods in the Applied Sciences, 41:4 (2018), 1480–1491 | DOI | MR | Zbl

[16] Heywood J. G., Rannacher R., “Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization”, SIAM J. on Numerical Analysis, 27:2 (1990), 353–384 | DOI | MR | Zbl

[17] Luskin M., Rannacher R., Wendland W., “On the smoothing property of the Crank-Nicolson scheme”, Applicable Analysis, 14:2 (1982), 117–135 | DOI | MR | Zbl

[18] Ciarlet P., The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978 | MR | Zbl