A modification of numerical methods for stochastic differential equations with the first integral
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 243-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, stochastic differential equations (SDEs) with the first integral are considered. The exact solution of such SDEs belongs to a smooth manifold with probability 1. However, the numerical solution does not belong to the manifold, but it belongs to some of its neighborhood due to the numerical error. The main objective of the paper is to construct modified numerical methods for solving SDEs that preserve the first integral. In this study, exact solutions for three SDE systems with the first integral are obtained, and the proposed modification of numerical methods is tested on these systems.
@article{SJVM_2019_22_3_a0,
     author = {T. A. Averina and K. A. Rybakov},
     title = {A modification of numerical methods for stochastic differential equations with the first integral},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {243--259},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a0/}
}
TY  - JOUR
AU  - T. A. Averina
AU  - K. A. Rybakov
TI  - A modification of numerical methods for stochastic differential equations with the first integral
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 243
EP  - 259
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a0/
LA  - ru
ID  - SJVM_2019_22_3_a0
ER  - 
%0 Journal Article
%A T. A. Averina
%A K. A. Rybakov
%T A modification of numerical methods for stochastic differential equations with the first integral
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 243-259
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a0/
%G ru
%F SJVM_2019_22_3_a0
T. A. Averina; K. A. Rybakov. A modification of numerical methods for stochastic differential equations with the first integral. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 3, pp. 243-259. http://geodesic.mathdoc.fr/item/SJVM_2019_22_3_a0/

[1] Averina T. A., Karachanskaya E. V., Rybakov K. A., “Statistical modeling of random processes with invariants”, Proc. of the 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON (Novosibirsk, Akademgorodok, Russia, September 18–22, 2017), IEEE, 2017, 34–37

[2] Averina T. A., Karachanskaya E. V., Rybakov K. A., “Statistical analysis of diffusion systems with invariants”, Russ. J. of Numerical Analysis and Mathematical Modelling, 33:1 (2018), 1–13 | DOI | MR | Zbl

[3] Dubko V. A., Voprosy teorii i primeneniya stokhasticheskikh differentsial'nykh uravnenii, DVO AN SSSR, Vladivostok, 1989

[4] Dubko V. A., Stokhasticheskie differentsial'nye uravneniya. Izbrannye razdely, Logos, Kiev, 2012

[5] Dubko V. A., Karachanskaya E. V., “Stokhasticheskie pervye integraly, yadra integral'nykh invariantov i uravneniya Kolmogorova”, Dal'nevostochnyi matematicheskii zhurnal, 14:2 (2014), 200–216 | Zbl

[6] Karachanskaya E. V., Sluchainye protsessy s invariantami, Izd-vo Tikhookeanskogo gos. universiteta, Khabarovsk, 2014

[7] Mukharlyamov R. G., Beshaw A. W., “Solving differential equations of motion for constrained mechanical systems”, Vestnik RUDN. Seriya: Matematika. Informatika. Fizika, 2013, no. 3, 81–91

[8] Galiullin I. A., Svyazi v mekhanike: teoriya poverkhnostei, Izd-vo MAI, M., 2016

[9] Hairer E., Lubich C., Wanner G., Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations, Springer, 2006 | MR | Zbl

[10] Milshtein G. N., Tretyakov M. V., Stochastic Numerics for Mathematical Physics, Springer, 2004 | MR

[11] Levakov A. A., Stokhasticheskie differentsial'nye uravneniya, BGU, Minsk, 2009

[12] Kloeden P. E., Platen E., Numerical Solution of Stochastic Differential Equations, Springer, 1995 | MR

[13] Averina T. A., “Ustoichivye chislennye metody resheniya stokhasticheskikh differentsial'nykh uravnenii v smysle Stratonovicha”, Vestnik Buryatskogo gos. universiteta. Seriya: Matematika. Informatika, 2012, no. 9, 91–95

[14] Kuznetsov D. F., “Stokhasticheskie differentsial'nye uravneniya: teoriya i praktika chislennogo resheniya. S programmami v srede Matlab. 5-e izdanie (pererabotannoe i dopolnennoe)”, Differentsial'nye uravneniya i protsessy upravleniya, 2017, no. 2

[15] Il'in V. A., Poznyak E. G., Osnovy matematicheskogo analiza, v. 1, Nauka, M., 1982

[16] Artemiev S. S., Averina T. A., Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations, VSP, 1997 | MR | Zbl

[17] Artemiev S. S., Marchenko M. A., Korneev V. D., Yakunin M. A., Ivanov A. A., Smirnov D. D., Analiz stokhasticheskikh kolebanii metodom Monte-Karlo na superkomp'yuterakh, Izd-vo SO RAN, Novosibirsk, 2016

[18] Gusev S. A., “Minimizing the variance of a mathematical expectation estimate for a diffusion process functional based on a parametric transformation of a parabolic boundary value problem”, Numerical Analysis and Applications, 4:2 (2011), 114–124 | DOI | Zbl

[19] Rybakov K. A., Statisticheskie metody analiza i fil'tratsii v nepreryvnykh stokhasticheskikh sistemakh, Izd-vo MAI, M., 2017

[20] Averina T. A., Rybakov K. A., “An approximate solution of the prediction problem for stochastic jump-diffusion systems”, Numerical Analysis and Applications, 10:1 (2017), 1–10 | DOI | MR | Zbl