Sensitivity of functionals to observation data in a variational assimilation problem for the sea thermodynamics model
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 229-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the mathematical model of the sea thermodynamics, developed in the Institute of Numerical Mathematics of the Russian Academy of Sciences, the problem of variational assimilation of the sea surface temperature data is considered, with allowance for the observation data error covariance matrices. Based on the variational assimilation of satellite observation data, the inverse problem of restoring a heat flux on the sea surface is solved. The sensitivity of functionals with respect to observation data in a problem of variational assimilation is studied, and the results of numerical experiments for the model of the Baltic Sea dynamics are presented.
@article{SJVM_2019_22_2_a8,
     author = {V. P. Shutyaev and E. I. Parmuzin},
     title = {Sensitivity of functionals to observation data in a variational assimilation problem for the sea thermodynamics model},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a8/}
}
TY  - JOUR
AU  - V. P. Shutyaev
AU  - E. I. Parmuzin
TI  - Sensitivity of functionals to observation data in a variational assimilation problem for the sea thermodynamics model
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 229
EP  - 242
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a8/
LA  - ru
ID  - SJVM_2019_22_2_a8
ER  - 
%0 Journal Article
%A V. P. Shutyaev
%A E. I. Parmuzin
%T Sensitivity of functionals to observation data in a variational assimilation problem for the sea thermodynamics model
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 229-242
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a8/
%G ru
%F SJVM_2019_22_2_a8
V. P. Shutyaev; E. I. Parmuzin. Sensitivity of functionals to observation data in a variational assimilation problem for the sea thermodynamics model. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 229-242. http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a8/

[1] Marchuk G. I., Adjoint Equations and Analysis of Complex Systems, Kluwer, Dordrecht, 1995 | MR | Zbl

[2] Lions J. L., Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968 | MR

[3] Sasaki Y. K. An objective analysis based on the variational method, J. Meteor. Soc. Japan, 36 (1958), 77–88 | DOI

[4] Penenko V. V., Obrazcov N. N. Variacionnyy metod soglasovaniya poley meteorologicheskih ehlementov, Meteorologiya i gidrologiya, 1976, no. 11, 1–11

[5] Le Dimet F. X., Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus, 38A (1986), 97–110 | DOI

[6] Agoshkov V. I., Metody optimal'nogo upravleniya i sopryazhennyh uravneniy v zadachah matematicheskoy fiziki, IVM RAN, M., 2003

[7] Mogensen K., Balmaseda M. A., Weaver A. T., Martin M., Vidard A., “NEMOVAR: a variational data assimilation system for the NEMO ocean model”, ECMWF Technical Memorandum, 2009, no. 120, 17–21

[8] Shutyaev V. P., Parmuzin E. I., “Ustoychivost' optimal'nogo resheniya zadachi variacionnogo usvoeniya s kovariacionnymi matricami oshibok dannyh nablyudeniy dlya modeli termodinamiki morya”, Sib. zhurn. vychisl. matematiki, 21:2 (2018), 221–236 | MR

[9] Zalesny V. B., Gusev A. V., Ivchenko V. O., Tamsalu R., Aps R., “Numerical model of the Baltic Sea circulation”, Russ. J. Numer. Anal. Math. Modelling.– 2013, 28:1, 85–100 | MR | Zbl

[10] Marchuk G. I., “Splitting and alternative direction methods”, Handbook of Numerical Analysis, v. 1, eds. P. G. Ciarlet, J. L. Lions, North-Holland, Amsterdam, 1990, 197–462 | MR | Zbl

[11] Zalesny V. B., Marchuk G. I., Agoshkov V. I., Bagno A. V., Gusev A. V., Diansky N. A., Moshonkin S. N., Tamsalu R., Volodin E. M. Numerical simulation of large-scale ocean circulation based on multicomponent splitting method, Russ. J. Numer. Anal. Math. Modelling, 25:6 (2010), 581–609 | DOI | MR | Zbl

[12] Agoshkov V. I., Parmuzin E. I., Shutyaev V. P. Numerical algorithm for variational assimilation of sea surface temperature data, Comput. Maths. Math. Phys, 48:8 (2008), 1293–1312 | DOI | MR | Zbl

[13] Agoshkov V. I., Parmuzin E. I., Zalesny V. B., Shutyaev V.P, Zakharova N. B., Gusev A. V. Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics, Russ. J. Numer. Anal. Math. Modelling, 30:4 (2015), 203–212 | DOI | MR | Zbl

[14] Le Dimet F.-X., Shutyaev V. On deterministic error analysis in variational data assimilation, Nonlinear Processes in Geophysics, 12 (2005), 481–490 | DOI

[15] Gejadze I., Le Dimet F.-X., Shutyaev V. P. On analysis error covariances in variational data assimilation, SIAM J. Sci. Comput., 30:4 (2008), 1847–1874 | DOI | MR

[16] Gejadze I., Le Dimet F.-X., Shutyaev V. P. On optimal solution error covariances in variational data assimilation problems, J. Comp. Phys., 229 (2010), 2159–2178 | DOI | MR | Zbl

[17] Gejadze I., Shutyaev V. P., Le Dimet F.-X. Analysis error covariance versus posterior covariance in variational data assimilation, Quarterly J. of the Royal Meteorological Society, 139 (2013), 1826–1841 | DOI | MR

[18] Parmuzin E. I., Shutyaev V. P. The study of solution sensitivity for the variational observation data assimilation problem in the Black Sea dynamics model, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 37–52 | DOI | MR | Zbl

[19] Agoshkov V. I., Parmuzin E. I., Shutyaev V. P. Assimilyatsiya dannykh nablyudenii v zadache tsirkulyatsii Chernogo morya i analiz chuvstvitelnosti ee resheniya, Izvestiya RAN. Fizika atmosfery i okeana, 49:6 (2013), 643–654 ; Agoshkov V. I., Parmuzin E. I., and Shutyaev V. P. Observational data assimilation in the problem of black sea circulation and sensitivity analysis of its solution, Izvestiya, Atmospheric and Ocean Physics.– 2013, 49:6, 592–602 | DOI | DOI

[20] Alekseev V. V., Zalesny V. B., “Chislennaya model' krupnomasshtabnoy dinamiki okeana”, Vychislitel'nye processy i sistemy, 10, ed. G.I. Marchuk, Nauka, M., 1993, 232–252

[21] Marchuk G. I., Dymnikov V. P., Zalesny V. B., Matematicheskie modeli v geofizicheskoy gidrodinamike i chislennye metody ih realizacii, Gidrometeoizdat, L., 1987

[22] Agoshkov V. I., Gusev A. V., Diansky N. A., and Oleinikov R. V. An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 1–10 | MR

[23] Tihonov A. N., “O reshenii nekorrektno postavlennyh zadach i metode regulyarizacii”, DAN SSSR, 151:3 (1963), 501–504 | Zbl

[24] Penenko V. V., Metody chislennogo modelirovaniya atmosfernyh processov, Gidrometeoizdat, L., 1981

[25] Lebedev V. I., Funkcional'nyy analiz i vychislitel'naya matematika, Fizmatlit, M., 2000

[26] Cacuci D. G., “Sensitivity theory for nonlinear systems: II. Extensions to additional classes of responses”, J. Math. Phys., 22 (1981), 2803–2812 | DOI | MR

[27] Shutyaev V. P., Operatory upravleniya i iteracionnye algoritmy v zadachah variacionnogo usvoeniya dannyh, Nauka, M., 2001

[28] Zaharova N. B., Lebedev S. A., “Interpolyaciya operativnyh dannyh buev ARGO dlya assimilyacii dannyh v modeli cirkulyacii Mirovogo okeana”, Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 7:4 (2010), 104–111

[29] Zakharova N. B., Agoshkov V. I., Parmuzin E. I., “The new method of ARGO buoys system observation data interpolation”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 67–84 | DOI | MR | Zbl