An adaptive analog of Nesterov's method for variational inequalities with a strongly monotone operator
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 201-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

An adaptive analog of the Nesterov method for variational inequalities with a strongly monotone operator is proposed. The main idea of the method proposed is the adaptive choice of constants in maximized concave functional at each iteration. In this case there is no need in specifying an exact value of this constant, because the method proposed makes possible to find a suitable constant at each iteration. Some estimates for the parameters determining the quality of the solution of the variational inequality depending on the number of iterations have been obtained.
@article{SJVM_2019_22_2_a6,
     author = {F. S. Stonyakin},
     title = {An adaptive analog of {Nesterov's} method for variational inequalities with a strongly monotone operator},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--211},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a6/}
}
TY  - JOUR
AU  - F. S. Stonyakin
TI  - An adaptive analog of Nesterov's method for variational inequalities with a strongly monotone operator
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 201
EP  - 211
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a6/
LA  - ru
ID  - SJVM_2019_22_2_a6
ER  - 
%0 Journal Article
%A F. S. Stonyakin
%T An adaptive analog of Nesterov's method for variational inequalities with a strongly monotone operator
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 201-211
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a6/
%G ru
%F SJVM_2019_22_2_a6
F. S. Stonyakin. An adaptive analog of Nesterov's method for variational inequalities with a strongly monotone operator. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 2, pp. 201-211. http://geodesic.mathdoc.fr/item/SJVM_2019_22_2_a6/

[1] Facchinei F., Pang J.S., Finite-Dimensional Variational Inequality and Complementarity Problems, v. 1, 2, Springer-Verlag, New York, 2003 | MR

[2] Antipin A.S., Jacimovic V., Jacimovic M., “Dynamics and variational inequalities”, Comput. Maths. and Math. Phys., 57:5 (2017), 784–801 | DOI | DOI | MR | Zbl

[3] Korpelevich G.M., “Ekstragradientnyy metod dlya otyskaniya sedlovyh tochek i drugih zadach”, Ekonomika i mat. metody, 12:4 (1976), 747–756 | Zbl

[4] Nemirovski A., “Prox-method with rate of convergence O(1/T) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems”, SIAM J. on Optimization, 15 (2004), 229–251 | DOI | MR | Zbl

[5] Nesterov Yu., “Universal gradient methods for convex optimization problems”, Math. Program. Series A and B archive, 152:1–2 (2015), 381–404 | DOI | MR | Zbl

[6] Gasnikov A.V., Sovremennye chislennye metody optimizatsii. Metod universal'nogo gradientnogo spuska, Izd-vo MFTI, M., 2018

[7] Nesterov Yu., “Dual extrapolation and its application for solving variational inequalities and related problems”, Math. Program. Ser. B, 109:2–3 (2007), 319–344 | DOI | MR | Zbl

[8] Nesterov Yu.E., Vvedenie v vypukluyu optimizatsiyu, MTSNMO, M., 2010

[9] Nesterov Yu., Scrimali L., “Solving strongly monotone variational and quasi-variational inequalities”, Discrete and Continuous Dynamical Systems, 2007 | DOI | MR

[10] Nesterov Yu.E., Algoritmicheskaya vypuklaya optimizatsiya, Dis. ... dokt. fiz.-mat. nauk: 01.01.07, M., 2013