Positive periodic solutions for a class of fourth-order nonlinear differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the existence and uniqueness of periodic solutions for a nonlinear fourth-order differential equation utilizing an explicit Green’s function and fixed point index theorem combining with an operator spectral theorem. We discuss an iteration method for constant coefficient nonlinear differential equations and establish a theorem on the existence of positive solutions for fourth-order boundary value problem with variable parameter. Finally, we give an example to illustrate our results.
@article{SJVM_2019_22_1_a0,
     author = {N. Bouteraa and S. Benaicha},
     title = {Positive periodic solutions for a class of fourth-order nonlinear differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a0/}
}
TY  - JOUR
AU  - N. Bouteraa
AU  - S. Benaicha
TI  - Positive periodic solutions for a class of fourth-order nonlinear differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2019
SP  - 1
EP  - 14
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a0/
LA  - ru
ID  - SJVM_2019_22_1_a0
ER  - 
%0 Journal Article
%A N. Bouteraa
%A S. Benaicha
%T Positive periodic solutions for a class of fourth-order nonlinear differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2019
%P 1-14
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a0/
%G ru
%F SJVM_2019_22_1_a0
N. Bouteraa; S. Benaicha. Positive periodic solutions for a class of fourth-order nonlinear differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 22 (2019) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SJVM_2019_22_1_a0/