On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 293-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse boundary value problem for a nonlinear parabolic equation is considered. Two-way estimates for the norms of values of a nonlinear operator in terms of the norms of values of the corresponding linear operator are obtained. Consequent by the two-way estimates are established for the modulus of continuity of a nonlinear inverse problem in terms of the modulus of continuity of the corresponding linear problem. The auxiliary boundary conditions method to construct stable approximate solutions to the nonlinear inverse problem is used. An accurate in order error estimate for the auxiliary boundary conditions method on a uniform regularization class has been obtained.
@article{SJVM_2018_21_3_a4,
     author = {E. V. Tabarintseva},
     title = {On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {293--313},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/}
}
TY  - JOUR
AU  - E. V. Tabarintseva
TI  - On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 293
EP  - 313
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/
LA  - ru
ID  - SJVM_2018_21_3_a4
ER  - 
%0 Journal Article
%A E. V. Tabarintseva
%T On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 293-313
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/
%G ru
%F SJVM_2018_21_3_a4
E. V. Tabarintseva. On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 293-313. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/

[1] Ivanov V. K., Korolyuk T. I., “Error estimates for solutions of incorrectly posed linear problems”, USSR Computational Mathematics and Mathematical Physics, 9:1 (1969), 35–49 | DOI | MR | Zbl

[2] Strakhov V. N., “O reshenii lineinykh nekorrektnykh zadach v gilbertovom prostranstve”, Diff. uravneniya, 6:8 (1970), 1490–1495 | MR | Zbl

[3] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problem and its applications, VSP, 2002 | MR

[4] Tabarintseva E. V., “On an estimate for the modulus of continuity of a nonlinear inverse problem”, Ural Math. J., 1 (2015), 87–92 | DOI | MR | Zbl

[5] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995

[6] Vasin V. V., Ageev A. L., Inverse and Ill-posed problems with a priori information, VSP, 1995 | MR | MR

[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995

[8] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, Izd-vo Mariiskogo gosuniversiteta, Ioshkar-Ola, 1998

[9] Tanana V. P., “Optimalnye po poryadku metody resheniya nelineinykh nekorrektno postavlennykh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 16:5 (1976), 503–507 | MR | Zbl

[10] Tanana V. P., Tabarintseva E. V., “O metode priblizheniya kusochno-nepreryvnykh reshenii nelineinykh obratnykh zadach”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 10:2 (2007), 221–228 | Zbl

[11] Tanana V. P., Tabarintseva E. V., “On an approximation method of a discontinuous solutions of an ill-posed problem”, J. of Applied and Industrial Mathematics, 1:1 (2007), 116–126 | DOI | MR

[12] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009

[13] Tanana V. P., “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matematiki, 7:2 (2004), 117–132 | MR | Zbl

[14] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988

[15] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965

[16] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[17] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989