Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_3_a4, author = {E. V. Tabarintseva}, title = {On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {293--313}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/} }
TY - JOUR AU - E. V. Tabarintseva TI - On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 293 EP - 313 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/ LA - ru ID - SJVM_2018_21_3_a4 ER -
%0 Journal Article %A E. V. Tabarintseva %T On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 293-313 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/ %G ru %F SJVM_2018_21_3_a4
E. V. Tabarintseva. On the estimate of accuracy of the auxiliary boundary conditions method for solving a~boundary value inverse problem for a~nonlinear equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 293-313. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a4/
[1] Ivanov V. K., Korolyuk T. I., “Error estimates for solutions of incorrectly posed linear problems”, USSR Computational Mathematics and Mathematical Physics, 9:1 (1969), 35–49 | DOI | MR | Zbl
[2] Strakhov V. N., “O reshenii lineinykh nekorrektnykh zadach v gilbertovom prostranstve”, Diff. uravneniya, 6:8 (1970), 1490–1495 | MR | Zbl
[3] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problem and its applications, VSP, 2002 | MR
[4] Tabarintseva E. V., “On an estimate for the modulus of continuity of a nonlinear inverse problem”, Ural Math. J., 1 (2015), 87–92 | DOI | MR | Zbl
[5] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995
[6] Vasin V. V., Ageev A. L., Inverse and Ill-posed problems with a priori information, VSP, 1995 | MR | MR
[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995
[8] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, Izd-vo Mariiskogo gosuniversiteta, Ioshkar-Ola, 1998
[9] Tanana V. P., “Optimalnye po poryadku metody resheniya nelineinykh nekorrektno postavlennykh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 16:5 (1976), 503–507 | MR | Zbl
[10] Tanana V. P., Tabarintseva E. V., “O metode priblizheniya kusochno-nepreryvnykh reshenii nelineinykh obratnykh zadach”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 10:2 (2007), 221–228 | Zbl
[11] Tanana V. P., Tabarintseva E. V., “On an approximation method of a discontinuous solutions of an ill-posed problem”, J. of Applied and Industrial Mathematics, 1:1 (2007), 116–126 | DOI | MR
[12] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009
[13] Tanana V. P., “Ob optimalnosti po poryadku metoda proektsionnoi regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matematiki, 7:2 (2004), 117–132 | MR | Zbl
[14] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988
[15] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965
[16] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[17] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989