On congruent selection of the Jordan blocks from a~singular square matrix
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 255-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a regularizing decomposition was introduced by R. Horn and V. Sergeichuk. This means the representation of a square matrix by a direct sum of the Jordan blocks with zero on the principal diagonal and a non-singular matrix. Such a representation is attained via congruent transformations and differs from the Jordan normal form. For the reasons explained in this paper, we prefer to speak about the SN-decomposition of a matrix (in other words, singular-non-singular decomposition) rather than the regularizing decomposition. Accordingly, the algorithms providing the former decomposition are called SN-algorithms. We propose a rational algorithm that considerably simplifies the SN-algorithms proposed by Horn and Sergeichuk.
@article{SJVM_2018_21_3_a1,
     author = {Kh. D. Ikramov},
     title = {On congruent selection of the {Jordan} blocks from a~singular square matrix},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {255--258},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On congruent selection of the Jordan blocks from a~singular square matrix
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 255
EP  - 258
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a1/
LA  - ru
ID  - SJVM_2018_21_3_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On congruent selection of the Jordan blocks from a~singular square matrix
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 255-258
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a1/
%G ru
%F SJVM_2018_21_3_a1
Kh. D. Ikramov. On congruent selection of the Jordan blocks from a~singular square matrix. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 255-258. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a1/

[1] Horn R. A., Sergeichuk V. V., “A regularization algorithm for matrices of bilinear and sesquilinear forms”, Linear Algebra Appl., 412:2–3 (2006), 380–395 | DOI | MR | Zbl