The analysis of numerical differentiation formulas on the Shishkin mesh with of a~boundary layer
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 243-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of numerical differentiation of functions with large gradients in the boundary layer is investigated. The problem is that in the case of functions with large gradients and a uniform grid, the relative error of the classical difference formulas for derivatives can be significant. It is proposed to use the Shishkin mesh to obtain a relative error of the formulas independent of a small parameter. Error estimates that depend on the number of nodes of the difference formulas for a derivative of a given order are obtained. It is proved that the error estimate is uniform in terms of a small parameter. In the case of the uniform grid, the region of the boundary layer is allocated, outside of which the numerical differentiation formulas have an error that is uniform in terms of a small parameter. The results of the numerical experiments are presented.
@article{SJVM_2018_21_3_a0,
     author = {A. I. Zadorin},
     title = {The analysis of numerical differentiation formulas on the {Shishkin} mesh with of a~boundary layer},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {243--254},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a0/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - The analysis of numerical differentiation formulas on the Shishkin mesh with of a~boundary layer
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 243
EP  - 254
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a0/
LA  - ru
ID  - SJVM_2018_21_3_a0
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T The analysis of numerical differentiation formulas on the Shishkin mesh with of a~boundary layer
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 243-254
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a0/
%G ru
%F SJVM_2018_21_3_a0
A. I. Zadorin. The analysis of numerical differentiation formulas on the Shishkin mesh with of a~boundary layer. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 243-254. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a0/

[1] Bakhvalov N. S., Chislennye metody, Nauka, Moskva, 1975

[2] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 10:3 (2007), 267–275

[3] Zadorin A. I., Zadorin N. A., “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comput. Math. Math. Phys., 50:2 (2010), 211–223 | DOI | MR | Zbl

[4] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Mathematical Reports, 9 (2012), 445–455 | MR | Zbl

[5] Zadorin A. I., “Lagrange interpolation and Newton–Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numerical Analysis and Applications, 8:3 (2015), 235–247 | DOI | MR | Zbl

[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[7] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific, Singapore, 2012 | MR | Zbl

[8] Linss T., “The necessity of Shishkin decompositions”, Appl. Math. Lett., 14 (2001), 891–896 | DOI | MR | Zbl

[9] Bagaev B. M., Shaidurov V. V., Setochnye metody resheniya zadach s pogranichnym sloem, Nauka, Novosibirsk, 1998 | MR

[10] Doolan E. P., Miller J. J. H., Schilders W. H. A., Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980 | MR | Zbl