Tracking the solution to a~nonlinear distributed differential equation by feedback laws
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 201-213
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonlinear distributed second order equation is considered. An algorithm for tracking a prescribed solution based on constructions from the feedback control theory is designed. The algorithm is stable with respect to informational noise and computational errors. It is oriented to a large enough time interval, where the solution is considered.
@article{SJVM_2018_21_2_a5,
author = {Yu. S. Osipov and V. I. Maksimov},
title = {Tracking the solution to a~nonlinear distributed differential equation by feedback laws},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {201--213},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/}
}
TY - JOUR AU - Yu. S. Osipov AU - V. I. Maksimov TI - Tracking the solution to a~nonlinear distributed differential equation by feedback laws JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 201 EP - 213 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/ LA - ru ID - SJVM_2018_21_2_a5 ER -
%0 Journal Article %A Yu. S. Osipov %A V. I. Maksimov %T Tracking the solution to a~nonlinear distributed differential equation by feedback laws %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 201-213 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/ %G ru %F SJVM_2018_21_2_a5
Yu. S. Osipov; V. I. Maksimov. Tracking the solution to a~nonlinear distributed differential equation by feedback laws. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 201-213. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/