Tracking the solution to a~nonlinear distributed differential equation by feedback laws
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 201-213

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear distributed second order equation is considered. An algorithm for tracking a prescribed solution based on constructions from the feedback control theory is designed. The algorithm is stable with respect to informational noise and computational errors. It is oriented to a large enough time interval, where the solution is considered.
@article{SJVM_2018_21_2_a5,
     author = {Yu. S. Osipov and V. I. Maksimov},
     title = {Tracking the solution to a~nonlinear distributed differential equation by feedback laws},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/}
}
TY  - JOUR
AU  - Yu. S. Osipov
AU  - V. I. Maksimov
TI  - Tracking the solution to a~nonlinear distributed differential equation by feedback laws
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 201
EP  - 213
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/
LA  - ru
ID  - SJVM_2018_21_2_a5
ER  - 
%0 Journal Article
%A Yu. S. Osipov
%A V. I. Maksimov
%T Tracking the solution to a~nonlinear distributed differential equation by feedback laws
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 201-213
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/
%G ru
%F SJVM_2018_21_2_a5
Yu. S. Osipov; V. I. Maksimov. Tracking the solution to a~nonlinear distributed differential equation by feedback laws. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 201-213. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/