Tracking the solution to a~nonlinear distributed differential equation by feedback laws
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 201-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear distributed second order equation is considered. An algorithm for tracking a prescribed solution based on constructions from the feedback control theory is designed. The algorithm is stable with respect to informational noise and computational errors. It is oriented to a large enough time interval, where the solution is considered.
@article{SJVM_2018_21_2_a5,
     author = {Yu. S. Osipov and V. I. Maksimov},
     title = {Tracking the solution to a~nonlinear distributed differential equation by feedback laws},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/}
}
TY  - JOUR
AU  - Yu. S. Osipov
AU  - V. I. Maksimov
TI  - Tracking the solution to a~nonlinear distributed differential equation by feedback laws
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 201
EP  - 213
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/
LA  - ru
ID  - SJVM_2018_21_2_a5
ER  - 
%0 Journal Article
%A Yu. S. Osipov
%A V. I. Maksimov
%T Tracking the solution to a~nonlinear distributed differential equation by feedback laws
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 201-213
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/
%G ru
%F SJVM_2018_21_2_a5
Yu. S. Osipov; V. I. Maksimov. Tracking the solution to a~nonlinear distributed differential equation by feedback laws. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 201-213. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a5/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[2] Krasovskii N. N., Kotel'nikova A. N., “One problem on stable tracking of motion”, Proc. of the Steklov Institute of Mathematics, 253, Suppl. 1, 2006, S151–S167 | DOI | MR | Zbl

[3] Cazenave T., Haraux A., An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998 | MR | Zbl

[4] Osipov Yu. S., “On the theory of differential games in systems with distributed parameters”, Soviet Math. Dokl., 16:4 (1975), 1093–1097 | MR | Zbl

[5] Osipov Yu. S., Selected Works, Moscow State University, M., 2009

[6] Maksimov V. I., “Reconstruction of controls in exponentially stable linear systems subjected to small perturbations”, J. of Applied Mathematics and Mechanics, 71:6 (2007), 851–861 | DOI | MR | Zbl

[7] Kryazhimskii A. V., Maksimov V. I., “Resource-saving infinite-horizon tracing under uncertain input”, Applied Mathematics and Computation, 217:3 (2010), 1135–1140 | DOI | MR

[8] Maksimov V. I., Osipov Yu. S., “Infinite-horizon boundary control of distributed systems”, Computational Mathematics and Mathematical Physics, 56:1 (2016), 14–25 | DOI | DOI | MR | Zbl