Splitting method for CABARET scheme approximating the non-uniform scalar conservation law
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 185-200

Voir la notice de l'article provenant de la source Math-Net.Ru

The splitting method for the CABARET scheme approximating the non-uniform scalar conservation law with convex and monotonically increasing flux function has been proposed. It was shown that at the first step of this method, when the uniform conservation law is approximated, the CABARET scheme is monotonic and its numerical solutions do not have non-physical oscillations in the shock wavefronts. Test computations that illustrate these properties of the CABARET scheme are presented.
@article{SJVM_2018_21_2_a4,
     author = {N. A. Zyuzina and V. V. Ostapenko and E. I. Polunina},
     title = {Splitting method for {CABARET} scheme approximating the non-uniform scalar conservation law},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/}
}
TY  - JOUR
AU  - N. A. Zyuzina
AU  - V. V. Ostapenko
AU  - E. I. Polunina
TI  - Splitting method for CABARET scheme approximating the non-uniform scalar conservation law
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 185
EP  - 200
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/
LA  - ru
ID  - SJVM_2018_21_2_a4
ER  - 
%0 Journal Article
%A N. A. Zyuzina
%A V. V. Ostapenko
%A E. I. Polunina
%T Splitting method for CABARET scheme approximating the non-uniform scalar conservation law
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 185-200
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/
%G ru
%F SJVM_2018_21_2_a4
N. A. Zyuzina; V. V. Ostapenko; E. I. Polunina. Splitting method for CABARET scheme approximating the non-uniform scalar conservation law. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 185-200. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/