Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_2_a4, author = {N. A. Zyuzina and V. V. Ostapenko and E. I. Polunina}, title = {Splitting method for {CABARET} scheme approximating the non-uniform scalar conservation law}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {185--200}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/} }
TY - JOUR AU - N. A. Zyuzina AU - V. V. Ostapenko AU - E. I. Polunina TI - Splitting method for CABARET scheme approximating the non-uniform scalar conservation law JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 185 EP - 200 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/ LA - ru ID - SJVM_2018_21_2_a4 ER -
%0 Journal Article %A N. A. Zyuzina %A V. V. Ostapenko %A E. I. Polunina %T Splitting method for CABARET scheme approximating the non-uniform scalar conservation law %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 185-200 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/ %G ru %F SJVM_2018_21_2_a4
N. A. Zyuzina; V. V. Ostapenko; E. I. Polunina. Splitting method for CABARET scheme approximating the non-uniform scalar conservation law. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 185-200. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/
[1] Iserles A., “Generalized leapfrog methods”, IMA J. of Numerical Analysis, 6:3 (1986), 381–392 | DOI | MR | Zbl
[2] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matematicheskoe modelirovanie, 10:1 (1998), 86–100 | MR | Zbl
[3] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy ‘Kabare’ ”, Matematicheskoe modelirovanie, 10:1 (1998), 101–116 | MR | Zbl
[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[5] Kulikovskii A. G., Pogorelov N. V., Semenov F. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR
[6] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. AN, 403:4 (2005), 459–464 | MR | Zbl
[7] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[8] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matematicheskoe modelirovanie, 21:7 (2009), 29–42 | MR | Zbl
[9] Ostapenko V. V., “On the strong monotonicity of the CABARET”, Computational Mathematics and Mathematical Physics, 52:3 (2012), 387–399 | DOI | MR | Zbl
[10] Karabasov S. A., Goloviznin V. M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI
[11] Karabasov S. A., Berloff P. S., Goloviznin V. M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI
[12] Goloviznin V. M., Zaitsev M. A., Karabasov S. A., Korotkin I. A., Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Izd-vo Moskovskogo universiteta, M., 2013
[13] Kovyrkina O. A., Ostapenko V. V., “On monotonicity of two-layer in time cabaret scheme”, Mathematical Models and Computer Simulations, 5:2 (2013), 180–189 | DOI | MR | Zbl
[14] Kovyrkina O. A., Ostapenko V. V., “Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field”, Computational Mathematics and Mathematical Physics, 56:5 (2016), 783–801 | DOI | DOI | MR | Zbl
[15] Kovyrkina O. A., Ostapenko V. V., “On the monotonicity of the CABARET scheme in the multidimensional case”, Doklady Mathematics, 91:3 (2015), 323–328 | DOI | DOI | MR | Zbl
[16] Zyuzina N. A., Ostapenko V. V., “The monotonicity of the CABARET scheme approximating a scalar conservation law with a convex flux”, Doklady Mathematics, 93:1 (2016), 69–73 | DOI | DOI | MR | Zbl
[17] Zyuzina N. A., Ostapenko V. V., “Monotonnaya approksimatsiya skhemoi CABARET skalyarnogo zakona sokhraneniya v sluchae znakoperemennogo kharakteristicheskogo polya”, Dokl. AN, 470:4 (2016), 375–379 | DOI | MR | Zbl
[18] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[19] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[20] Harten A., “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM J. Numer. Analys., 21:1 (1984), 1–23 | DOI | MR | Zbl
[21] Nessyahu H., Tadmor E., “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl
[22] Jiang G. S., Shu C. W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl
[23] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR
[24] Nakoryakov V. E., Ostapenko V. V., Bartashevich M. V., “Heat and mass transfer in the liquid film on a vertical wall in roll-wave regime”, Int. J. Heat and Mass Transfer., 55:23–24 (2012), 6514–6518 | DOI
[25] Nakoryakov V. E., Ostapenko V. V., Bartashevich M. V., “Issledovanie katyaschikhsya voln na poverkhnosti stekayuschei plenki kondensata”, DAN, 454:5 (2014), 540–544 | MR
[26] Nakoryakov V. E., Ostapenko V. V., Bartashevich M. V., “Rolling waves on the surface of a thin layer of viscous liquid at phase transition”, Int. J. Heat and Mass Transfer., 89 (2015), 846–855 | DOI
[27] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | MR | Zbl