Splitting method for CABARET scheme approximating the non-uniform scalar conservation law
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 185-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The splitting method for the CABARET scheme approximating the non-uniform scalar conservation law with convex and monotonically increasing flux function has been proposed. It was shown that at the first step of this method, when the uniform conservation law is approximated, the CABARET scheme is monotonic and its numerical solutions do not have non-physical oscillations in the shock wavefronts. Test computations that illustrate these properties of the CABARET scheme are presented.
@article{SJVM_2018_21_2_a4,
     author = {N. A. Zyuzina and V. V. Ostapenko and E. I. Polunina},
     title = {Splitting method for {CABARET} scheme approximating the non-uniform scalar conservation law},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/}
}
TY  - JOUR
AU  - N. A. Zyuzina
AU  - V. V. Ostapenko
AU  - E. I. Polunina
TI  - Splitting method for CABARET scheme approximating the non-uniform scalar conservation law
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 185
EP  - 200
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/
LA  - ru
ID  - SJVM_2018_21_2_a4
ER  - 
%0 Journal Article
%A N. A. Zyuzina
%A V. V. Ostapenko
%A E. I. Polunina
%T Splitting method for CABARET scheme approximating the non-uniform scalar conservation law
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 185-200
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/
%G ru
%F SJVM_2018_21_2_a4
N. A. Zyuzina; V. V. Ostapenko; E. I. Polunina. Splitting method for CABARET scheme approximating the non-uniform scalar conservation law. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 185-200. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a4/

[1] Iserles A., “Generalized leapfrog methods”, IMA J. of Numerical Analysis, 6:3 (1986), 381–392 | DOI | MR | Zbl

[2] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matematicheskoe modelirovanie, 10:1 (1998), 86–100 | MR | Zbl

[3] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy ‘Kabare’ ”, Matematicheskoe modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[5] Kulikovskii A. G., Pogorelov N. V., Semenov F. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[6] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. AN, 403:4 (2005), 459–464 | MR | Zbl

[7] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[8] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matematicheskoe modelirovanie, 21:7 (2009), 29–42 | MR | Zbl

[9] Ostapenko V. V., “On the strong monotonicity of the CABARET”, Computational Mathematics and Mathematical Physics, 52:3 (2012), 387–399 | DOI | MR | Zbl

[10] Karabasov S. A., Goloviznin V. M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI

[11] Karabasov S. A., Berloff P. S., Goloviznin V. M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI

[12] Goloviznin V. M., Zaitsev M. A., Karabasov S. A., Korotkin I. A., Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Izd-vo Moskovskogo universiteta, M., 2013

[13] Kovyrkina O. A., Ostapenko V. V., “On monotonicity of two-layer in time cabaret scheme”, Mathematical Models and Computer Simulations, 5:2 (2013), 180–189 | DOI | MR | Zbl

[14] Kovyrkina O. A., Ostapenko V. V., “Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field”, Computational Mathematics and Mathematical Physics, 56:5 (2016), 783–801 | DOI | DOI | MR | Zbl

[15] Kovyrkina O. A., Ostapenko V. V., “On the monotonicity of the CABARET scheme in the multidimensional case”, Doklady Mathematics, 91:3 (2015), 323–328 | DOI | DOI | MR | Zbl

[16] Zyuzina N. A., Ostapenko V. V., “The monotonicity of the CABARET scheme approximating a scalar conservation law with a convex flux”, Doklady Mathematics, 93:1 (2016), 69–73 | DOI | DOI | MR | Zbl

[17] Zyuzina N. A., Ostapenko V. V., “Monotonnaya approksimatsiya skhemoi CABARET skalyarnogo zakona sokhraneniya v sluchae znakoperemennogo kharakteristicheskogo polya”, Dokl. AN, 470:4 (2016), 375–379 | DOI | MR | Zbl

[18] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[19] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[20] Harten A., “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM J. Numer. Analys., 21:1 (1984), 1–23 | DOI | MR | Zbl

[21] Nessyahu H., Tadmor E., “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl

[22] Jiang G. S., Shu C. W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[23] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[24] Nakoryakov V. E., Ostapenko V. V., Bartashevich M. V., “Heat and mass transfer in the liquid film on a vertical wall in roll-wave regime”, Int. J. Heat and Mass Transfer., 55:23–24 (2012), 6514–6518 | DOI

[25] Nakoryakov V. E., Ostapenko V. V., Bartashevich M. V., “Issledovanie katyaschikhsya voln na poverkhnosti stekayuschei plenki kondensata”, DAN, 454:5 (2014), 540–544 | MR

[26] Nakoryakov V. E., Ostapenko V. V., Bartashevich M. V., “Rolling waves on the surface of a thin layer of viscous liquid at phase transition”, Int. J. Heat and Mass Transfer., 89 (2015), 846–855 | DOI

[27] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | MR | Zbl