Recovery of the time-dependent diffusion coefficient by known non-local data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 55-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of recovering the leading time-dependent coefficient by the known non-local additional information is investigated. For an approximate solution of the nonlinear inverse problems we propose the gradient method of minimizing the target functional. The comparative analysis with the method based on the linearized approximation scheme with respect to time is made. The results of the numerical calculations are presented.
@article{SJVM_2018_21_1_a3,
     author = {S. I. Kabanikhin and M. A. Shishlenin},
     title = {Recovery of the time-dependent diffusion coefficient by known non-local data},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/}
}
TY  - JOUR
AU  - S. I. Kabanikhin
AU  - M. A. Shishlenin
TI  - Recovery of the time-dependent diffusion coefficient by known non-local data
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 55
EP  - 63
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/
LA  - ru
ID  - SJVM_2018_21_1_a3
ER  - 
%0 Journal Article
%A S. I. Kabanikhin
%A M. A. Shishlenin
%T Recovery of the time-dependent diffusion coefficient by known non-local data
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 55-63
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/
%G ru
%F SJVM_2018_21_1_a3
S. I. Kabanikhin; M. A. Shishlenin. Recovery of the time-dependent diffusion coefficient by known non-local data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 55-63. http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/