Recovery of the time-dependent diffusion coefficient by known non-local data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 55-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of recovering the leading time-dependent coefficient by the known non-local additional information is investigated. For an approximate solution of the nonlinear inverse problems we propose the gradient method of minimizing the target functional. The comparative analysis with the method based on the linearized approximation scheme with respect to time is made. The results of the numerical calculations are presented.
@article{SJVM_2018_21_1_a3,
     author = {S. I. Kabanikhin and M. A. Shishlenin},
     title = {Recovery of the time-dependent diffusion coefficient by known non-local data},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/}
}
TY  - JOUR
AU  - S. I. Kabanikhin
AU  - M. A. Shishlenin
TI  - Recovery of the time-dependent diffusion coefficient by known non-local data
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 55
EP  - 63
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/
LA  - ru
ID  - SJVM_2018_21_1_a3
ER  - 
%0 Journal Article
%A S. I. Kabanikhin
%A M. A. Shishlenin
%T Recovery of the time-dependent diffusion coefficient by known non-local data
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 55-63
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/
%G ru
%F SJVM_2018_21_1_a3
S. I. Kabanikhin; M. A. Shishlenin. Recovery of the time-dependent diffusion coefficient by known non-local data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 55-63. http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a3/

[1] Vabischevich P. N., Klibanov M. V., “Vychislitelnaya identifikatsiya starshego koeffitsienta parabolicheskogo uravneniya”, Diff. uravneniya, 52:7 (2016), 896–903 | DOI

[2] Gubaidullin I. M., Zhalnin R. V., Masyagin V. F., Tishkin V. F., Shurshina A. S., “Primenenie razryvnogo metoda Galerkina dlya resheniya obratnoi zadachi diffuzii lekarstvennykh veschestv iz khitozanovykh plenok”, Zhurn. SVMO, 18:2 (2016), 94–105

[3] Bouziani A., “Mixed problem with integral conditions for a certain parabolic equation”, J. of Applied Mathematics and Stochastic Analysis, 9 (1996), 323–330 | DOI | MR

[4] Cannon J. R., Rundell W., “Recovering a time dependent coefficient in a parabolic differential equation”, J. Math. Anal. Appl., 160 (1991), 572–582 | DOI | MR

[5] Cannon J. R., Yin H.-M., “Numerical solutions of some parabolic inverse problems”, Numerical Methods for Partial Differential Equations, 6 (1990), 177–191 | DOI | MR

[6] Dehghan M., “Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement”, Numerical Methods for Partial Differential Equations, 21 (2005), 611–622 | DOI | MR

[7] Ivanchov N. I., “On the determination of the time-dependent leading coefficient in a parabolic equation”, Sibirsk. Mat. Zh., 39:3 (1998), 539–550 | MR | Zbl

[8] Hussein M., Lesnic D., Ismailov M. I., “An inverse problem of finding the time-dependent diffusion coefficient from an integral condition”, Mathematical Methods in the Applied Sciences, 39:5 (2016), 963–980 | DOI | MR

[9] Liao W., Dehghan M., Mohebbi A., “Direct numerical method for an inverse problem of a parabolic partial differential equation”, J. of Computational Applied Mathematics, 232 (2009), 351–360 | DOI | MR

[10] Onyejekwe O. N., “Determination of two-time dependent coefficients in a parabolic partial differential equation by homotopy analysis method”, Inter. J. of Applied Mathematical Research, 3:2 (2014), 161–167 | DOI

[11] Shaik M. R., Korsapati M., Panati D., “Polymers in controlled drug delivery systems”, Inter. J. Pharm. Sei., 2:4 (2012), 112–116

[12] Vilar G., Tulla-Puche J., Albericio F., “Polymers and drug delivery systems”, Current Drug Delivery, 9:4 (2012), 367–394 | DOI

[13] Kabanikhin S. I., Scherzer O., Shishlenin M. A., “Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation”, J. of Inverse and Ill-Posed Problems, 11:1 (2003), 87–109 | DOI | MR

[14] Kabanikhin S. I., Shishlenin M. A., “Quasi-solution in inverse coefficient problems”, J. of Inverse and Ill-Posed Problems, 16:7 (2008), 705–713 | DOI | MR

[15] Kabanikhin S. I., Shishlenin M. A., “Ob ispolzovanii apriornoi informatsii v koeffitsientnykh obratnykh zadachakh dlya giperbolicheskikh uravnenii”, Tr. IMM UrO RAN, 18, no. 1, 2012, 147–164

[16] Kabanikhin S. I., “Definitions and examples of inverse and ill-posed problems”, J. of Inverse and Ill-Posed Problems, 16:4 (2008), 317–357 | DOI | MR

[17] Alifanov O. M., Inverse Heat Transfer Problems, Springer-Verlag, 2011