A description of pairs of the quasi-commuting Toeplitz and Hankel matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 439-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that the square matrices $A$ and $B$ are of the same order quasi-commute if $AB=\sigma BA$ for some scalar $\sigma$. Classical relations of commutation and anti-commutation are particular cases of this definition. We give a complete description of pairs of the quasi-commuting Toeplitz and Hankel matrices for $\sigma\ne\pm1$.
@article{SJVM_2017_20_4_a6,
     author = {V. N. Chugunov and Kh. D. Ikramov},
     title = {A description of pairs of the quasi-commuting {Toeplitz} and {Hankel} matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {439--444},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a6/}
}
TY  - JOUR
AU  - V. N. Chugunov
AU  - Kh. D. Ikramov
TI  - A description of pairs of the quasi-commuting Toeplitz and Hankel matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 439
EP  - 444
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a6/
LA  - ru
ID  - SJVM_2017_20_4_a6
ER  - 
%0 Journal Article
%A V. N. Chugunov
%A Kh. D. Ikramov
%T A description of pairs of the quasi-commuting Toeplitz and Hankel matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 439-444
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a6/
%G ru
%F SJVM_2017_20_4_a6
V. N. Chugunov; Kh. D. Ikramov. A description of pairs of the quasi-commuting Toeplitz and Hankel matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 439-444. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a6/

[1] Gel'fgat V. I., “Commutation criterion for Toeplitz matrices”, Comput. Mathem. and Math. Physics, 38:1 (1998), 7–10 | MR | Zbl

[2] Ikramov Kh. D., “Describing normal Toeplitz matrices”, Comput. Mathem. and Math. Physics, 34:3 (1994), 399–404 | MR | Zbl

[3] Chugunov V. N., Ikramov Kh. D., “A complete solution of the normal Hankel problem”, Linear Algebra and its Appl., 432:12 (2010), 3210–3230 | DOI | MR | Zbl

[4] Gel'fgat V. I., “Commutation conditions for Hankel matrices”, Comput. Mathem. and Math. Physics, 51:7 (2011), 1102–1113 | DOI | MR | Zbl

[5] Chugunov V. N., “On the description of pairs of anti-commuting Hankel matrices”, J. of Mathematical Sciences, 224:6 (2016), 971–981 | DOI | MR

[6] Chugunov V. N., Ikramov Kh. D., “Permutability of Toeplitz and Hankel matrices”, Linear Algebra Appl., 467 (2015), 226–242 | DOI | MR | Zbl

[7] Kassel C., Quantum Groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[8] Manin Yu. I., Quantum Groups and Non-Commutative Geometry, CRM, Montreal, 1988 | MR | Zbl