A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 425-437.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the two-velocity stationary hydrodynamics system with a single pressure and inhomogeneous divergent and boundary conditions for the two velocities. This system is overdetermined. By replacing the unknown functions, the problem is reduced to a homogeneous one. The solution of the resulting system is reduced to the consecutive solutions of the two boundary value problems: the Stokes problem for a single velocity and pressure, and overdetermined system for the other velocity. We present the generalized statements of these problems and their discrete approximation using the finite element method. To solve the overdetermined problem we apply a version of the regularization methods.
@article{SJVM_2017_20_4_a5,
     author = {M. V. Urev and Kh. Kh. Imomnazarov and Jian-Gang Tang},
     title = {A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {425--437},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a5/}
}
TY  - JOUR
AU  - M. V. Urev
AU  - Kh. Kh. Imomnazarov
AU  - Jian-Gang Tang
TI  - A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 425
EP  - 437
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a5/
LA  - ru
ID  - SJVM_2017_20_4_a5
ER  - 
%0 Journal Article
%A M. V. Urev
%A Kh. Kh. Imomnazarov
%A Jian-Gang Tang
%T A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 425-437
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a5/
%G ru
%F SJVM_2017_20_4_a5
M. V. Urev; Kh. Kh. Imomnazarov; Jian-Gang Tang. A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 425-437. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a5/

[1] Dorovskii V. N., “Obrazovanie dissipativnykh struktur v protsesse neobratimoi peredachi impulsa litosfery”, Geologiya i geofizika, 1987, no. 6, 108–117

[2] Dorovskii V. N., Perepechko Yu. V., “Teoriya chastichnogo plavleniya”, Geologiya i geofizika, 1989, no. 9, 56–64

[3] Dzhuraev D., Imomnazarov Kh. Kh., Urev M. V., “Kraevaya zadacha dlya odnoi pereopredelennoi sistemy, voznikayuschei v dvukhskorostnoi gidrodinamike”, Tez. Respublikanskoi nauchnoi konf. (s uchastiem zarubezhnykh uchenykh) “Matematicheskaya fizika i rodstvennye problemy sovremennogo analiza” (Bukhara, 26–27 noyabrya 2015 g.), Bukhara, 2015, 197–198

[4] Imomnazarov Kh. Kh., Imomnazarov Sh. Kh., Mamatkulov M. M., Chernykh E. G., “Fundamentalnoe reshenie dlya statsionarnogo uravneniya dvukhskorostnoi gidrodinamiki s odnim davleniem”, Sib. zhurn. industr. matem., 17:4 (2014), 60–66 | MR | Zbl

[5] Zhabborov N. M., Imomnazarov Kh. Kh., Nekotorye nachalno-kraevye zadachi mekhaniki dvukhskorostnykh sred, Izd-vo NUUz, Tashkent, 2012

[6] Gudovich I. S., Krein S. G., Kulikov I. M., “Kraevye zadachi dlya uravnenii Maksvella”, Doklady AN SSSR, 207:2 (1972), 321–324 | MR

[7] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[8] Girault V., Raviart P.-A., Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986 | MR | Zbl

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | MR

[10] Kremer I. A., Urev M. V., “Regulyarizatsiya statsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede i reshenie ee metodom konechnykh elementov”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:2 (2009), 161–170 | Zbl

[11] Nedelec J. C., “A new family of mixed finite elements in $\mathbb R^3$”, Numer. Math., 50 (1986), 57–81 | DOI | MR | Zbl

[12] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980

[13] Kremer I. A., Urev M. V., “Reshenie metodom konechnykh elementov regulyarizovannoi versii statsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 13:1 (2010), 33–49 | Zbl

[14] Ivanov M. I., Kremer I. A., Urev M. V., “Reshenie metodom regulyarizatsii kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Zhurn. vychisl. matem. i mat. fiziki, 52:3 (2012), 564–576 | MR | Zbl

[15] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[16] Ivanov M. I., Kateshov V. A., Kremer I. A., Epov M. I., “Programmnoe obespechenie MODEM 3D dlya interpretatsii dannykh nestatsionarnykh zondirovanii s uchetom effektov vyzvannoi polyarizatsii”, Zapiski Gornogo instituta, 183 (2009), 242–245