The outer layer method for solving boundary value problems of the elasticity theory
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 289-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an algorithm for solving boundary value problems of the elasticity theory, suitable to solve contact problems and those whose scope of deformation contains thin layers of a medium. The solution is represented as a linear combination of subsidiary solutions and fundamental solutions to the Lame equations. Singular points of fundamental solutions of the Lame equations are located as an external layer of the deformation around the perimeter. Coefficients of the linear combination are determined by minimizing deviations of a linear combination from the boundary conditions. To minimize deviations, the conjugate gradient method is applied. Examples of calculations for mixed boundary conditions are presented.
@article{SJVM_2017_20_3_a4,
     author = {V. I. Mashukov},
     title = {The outer layer method for solving boundary value problems of the elasticity theory},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {289--296},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a4/}
}
TY  - JOUR
AU  - V. I. Mashukov
TI  - The outer layer method for solving boundary value problems of the elasticity theory
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 289
EP  - 296
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a4/
LA  - ru
ID  - SJVM_2017_20_3_a4
ER  - 
%0 Journal Article
%A V. I. Mashukov
%T The outer layer method for solving boundary value problems of the elasticity theory
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 289-296
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a4/
%G ru
%F SJVM_2017_20_3_a4
V. I. Mashukov. The outer layer method for solving boundary value problems of the elasticity theory. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 289-296. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a4/

[1] Konovalov A. N., Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti, Nauka, Novosibirsk, 1988 | MR

[2] Kupradze V. D., Metody potentsiala v teorii uprugosti, Fizmatgiz, M., 1963 | MR

[3] Kupradze V. D., Gegeliya T. G., Basheleishvili M. O., Burchuladze T. V., Trëkhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[4] Kheigeman L., Yang D., Prikladnye iteratsionnye metody, Mir, M., 1986 | MR