A stochastic model of the nanowires growth by molecular beam epitaxy
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 181-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a stochastic model of the nanowire growth by molecular beam epitaxy based on probability mechanisms of surface diffusion, mutual shading, adatoms rescattering and survival probability is proposed. A direct simulation algorithm based on this model is implemented, and a comprehensive study of the growth kinetics of a family of nanowires initially distributed at a height of about tens of nanometers to heights of about several thousands of nanometers is carried out. The time range corresponds to growing nanowires experimentally for up to 3–4 hours. In this paper we formulate a statement, which is numerically confirmed: under certain conditions, which can be implemented in real experiments, the nanowires height distribution becomes narrower with time, i.e. in the nanowires ensemble their heights are aligned in the course of time. For this to happen, it is necessary that the initial radius distribution of nanowires be narrow and the density of the nanowires on a substrate be not very high.
@article{SJVM_2017_20_2_a5,
     author = {K. K. Sabelfeld and E. G. Kablukova},
     title = {A stochastic model of the nanowires growth by molecular beam epitaxy},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {181--199},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a5/}
}
TY  - JOUR
AU  - K. K. Sabelfeld
AU  - E. G. Kablukova
TI  - A stochastic model of the nanowires growth by molecular beam epitaxy
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 181
EP  - 199
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a5/
LA  - ru
ID  - SJVM_2017_20_2_a5
ER  - 
%0 Journal Article
%A K. K. Sabelfeld
%A E. G. Kablukova
%T A stochastic model of the nanowires growth by molecular beam epitaxy
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 181-199
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a5/
%G ru
%F SJVM_2017_20_2_a5
K. K. Sabelfeld; E. G. Kablukova. A stochastic model of the nanowires growth by molecular beam epitaxy. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 181-199. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a5/

[1] Barth S., Hernandez-Ramirez F., Holmes D. D., Romano-Rodriguez A., “Synthesis and applications of one-dimensional semiconductors”, Prog. Mater. Sci., 55:6 (2010), 563–627 | DOI

[2] Fernandez-Garrido S., Kaganer V. M., Sabelfeld K. K., Gotschke T., Grandal J., Calleja E., Geelhaar L., Brandt O., “Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy”, Nano Letters, 13:7 (2013), 3274–3280 | DOI

[3] Kaganer V. M., Fernandez-Garrido S., Dogan P., Sabelfeld K. K., Brandt O., “Nucleation, growth and bundling of GaN nanowires in molecular beam epitaxy: Disentangling the origin of nanowire coalescence”, Nano Letters, 16:6 (2016), 3717–3725 | DOI

[4] Nazarenko M. V., Sibirev N. V., Dubrovskii V. G., “Samosoglasovannaya model rosta i kristallicheskoi struktury nitevidnykh nanokristallov s uchetom diffuzii adatomov”, Zhurn. tekhn. fiziki, 81:2 (2011), 153–156

[5] Nastovyak A. G., Neizvestnyi I. G., Shvarts N. L., Yanovitskaya Z. Sh., “Modelirovanie rosta nanoviskerov metodom Monte-Karlo”, Fizika i tekhnika poluprovodnikov, 4:1 (2010), 130–135

[6] Ristic J., Calleja E., Fernandez-Garrido S., Cerutti L., Trampert A., Jahn U., Ploog K. H., “On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy”, J. Cryst. Growth., 310:18 (2008), 4035–4045 | DOI

[7] Sabelfeld K. K., Kaganer V. M., Limbach F., Dogan P., Brandt O., Geelhaar L., Riechert H., “Height self-equilibration during the growth of dense nanowire ensembles: Order emerging from disorder”, Appl. Phys. Lett., 103:13 (2013), 133105–133109 | DOI

[8] Sabelfeld K. K., “Splitting and survival probabilities in stochastic random walk methods and applications”, Monte Carlo Methods Appl., 22:1 (2016), 55–72 | DOI | MR | Zbl

[9] Supercomputer center of the Institute of Computational Mathematics and Mathematical Geophysics, , SB RAS http://www2.sscc.ru/