Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_2_a3, author = {J. P. Jaiswal}, title = {Analysis of semilocal convergence in {Banach} spaces under relaxed condition and computational efficiency}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {157--168}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/} }
TY - JOUR AU - J. P. Jaiswal TI - Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 157 EP - 168 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/ LA - ru ID - SJVM_2017_20_2_a3 ER -
%0 Journal Article %A J. P. Jaiswal %T Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 157-168 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/ %G ru %F SJVM_2017_20_2_a3
J. P. Jaiswal. Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/
[1] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl
[2] Amat S., Busquier S., “Third-order iterative methods under Kantorovich conditions”, J. Math. Anal. Appl., 336:1 (2007), 243–261 | DOI | MR | Zbl
[3] Parida P. K., Gupta D. K., “Recurrence relations for a Newton-like method in Banach spaces”, J. Comput. Appl. Math., 206:2 (2007), 873–887 | DOI | MR | Zbl
[4] Hernandez M. A., Salanova M. A., “Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces”, Southwest J. Pure and Appl. Math., 1 (1999), 29–40 | MR | Zbl
[5] Zheng L., Gu C., “Fourth-order convergence theorem by using majorizing functions for super-Halley method in Banach spaces”, Int. J. Comp. Math., 90 (2013), 423–434 | DOI | MR | Zbl
[6] Cordero A., Hernandez-Veron M. A., Romero N., Torregrosa S., “Semilocal convergence by using recurrence relations for fifth-order method in Banach spaces”, J. Comput. Appl. Math., 273 (2015), 205–213 | DOI | MR | Zbl
[7] Cordero A., Ezquerro J. A., Hernandez-Veron M. A., Torregrosa S., “On the local convergence of a fifth-order iterative method in Banach spaces”, J. Appl. Math. Comput., 251 (2015), 396–403 | DOI | MR | Zbl
[8] Singh S., Gupta D. K., Martinez E., Hueso J. L., “Semilocal and local convergence of a fifth order iteration with Frechet derivative satisfying Holder condition”, J. Appl. Math. Comput., 276 (2016), 266–277 | DOI | MR
[9] Ganesh M., Joshi M. C., “Numerical solvability of Hammerstein integral equations of mixed type”, IMA. J. Numer. Anal., 11 (1991), 21–31 | DOI | MR | Zbl
[10] Ezquerro J. A., Hernandez M. A., “On the R-order of the Halley method”, J. Math. Anal. Appl., 303:2 (2005), 591–601 | DOI | MR | Zbl
[11] Ezquerro J. A., Hernandez M. A., “New iterations of R-order four with reduced computational cost”, BIT Numer. Math., 49:2 (2009), 325–342 | DOI | MR | Zbl
[12] Bruns D. D., Bailey J. E., “Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state”, Chem. Eng. Sci., 32:3 (1977), 257–264 | DOI
[13] Argyros I. K., “Remarks on the convergence of Newton's method under Holder continuity conditions”, Tamkang J. Math., 23 (1992), 269–277 | MR | Zbl
[14] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl
[15] Ostrowski A. M., Solution of Equations and Systems of Equations, Academic Press, New York–London, 1966 | MR | Zbl
[16] Traub J. F., Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1982 | Zbl
[17] Grau-Sanchez M., Grau A., Noguera M., “On the computational efficiency index and some iterative methods for solving systems of nonlinear equations”, J. Comput. Appl. Math., 236 (2011), 1259–1266 | DOI | MR | Zbl
[18] Gautschi W., Numerical Analysis: An introduction, Birkhäuser, Boston, 1997 | MR | Zbl
[19] Sharma J. R., Gupta P., “An efficient fifth order method for solving systems of nonlinear equations”, J. Comput. Math. Appl., 67:3 (2014), 591–601 | DOI | MR | Zbl
[20] Chen L., Gu C., Ma Y., “Semilocal convergence for a fifth-order Newton's method using recurrence relations in Banach spaces”, J. Appl. Math., 2011 (2011), Article ID 786306 | MR
[21] Hernandez-Veron M. A., Martinez E., “On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions”, Numer. Algor., 70:2 (2015), 377–392 | DOI | MR | Zbl