Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 157-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is concerned with the study of semilocal convergence of a fifth-order method for solving nonlinear equations in Banach spaces under mild conditions. An existence and uniqueness theorem is proved and followed by error estimates. The computational superiority of the considered scheme over the identical order methods is also examined, which shows the efficiency of the present scheme from a computational point of view. Lastly, an application of the theoretical development is made in a nonlinear integral equation.
@article{SJVM_2017_20_2_a3,
     author = {J. P. Jaiswal},
     title = {Analysis of semilocal convergence in {Banach} spaces under relaxed condition and computational efficiency},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {157--168},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/}
}
TY  - JOUR
AU  - J. P. Jaiswal
TI  - Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 157
EP  - 168
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/
LA  - ru
ID  - SJVM_2017_20_2_a3
ER  - 
%0 Journal Article
%A J. P. Jaiswal
%T Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 157-168
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/
%G ru
%F SJVM_2017_20_2_a3
J. P. Jaiswal. Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/

[1] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl

[2] Amat S., Busquier S., “Third-order iterative methods under Kantorovich conditions”, J. Math. Anal. Appl., 336:1 (2007), 243–261 | DOI | MR | Zbl

[3] Parida P. K., Gupta D. K., “Recurrence relations for a Newton-like method in Banach spaces”, J. Comput. Appl. Math., 206:2 (2007), 873–887 | DOI | MR | Zbl

[4] Hernandez M. A., Salanova M. A., “Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces”, Southwest J. Pure and Appl. Math., 1 (1999), 29–40 | MR | Zbl

[5] Zheng L., Gu C., “Fourth-order convergence theorem by using majorizing functions for super-Halley method in Banach spaces”, Int. J. Comp. Math., 90 (2013), 423–434 | DOI | MR | Zbl

[6] Cordero A., Hernandez-Veron M. A., Romero N., Torregrosa S., “Semilocal convergence by using recurrence relations for fifth-order method in Banach spaces”, J. Comput. Appl. Math., 273 (2015), 205–213 | DOI | MR | Zbl

[7] Cordero A., Ezquerro J. A., Hernandez-Veron M. A., Torregrosa S., “On the local convergence of a fifth-order iterative method in Banach spaces”, J. Appl. Math. Comput., 251 (2015), 396–403 | DOI | MR | Zbl

[8] Singh S., Gupta D. K., Martinez E., Hueso J. L., “Semilocal and local convergence of a fifth order iteration with Frechet derivative satisfying Holder condition”, J. Appl. Math. Comput., 276 (2016), 266–277 | DOI | MR

[9] Ganesh M., Joshi M. C., “Numerical solvability of Hammerstein integral equations of mixed type”, IMA. J. Numer. Anal., 11 (1991), 21–31 | DOI | MR | Zbl

[10] Ezquerro J. A., Hernandez M. A., “On the R-order of the Halley method”, J. Math. Anal. Appl., 303:2 (2005), 591–601 | DOI | MR | Zbl

[11] Ezquerro J. A., Hernandez M. A., “New iterations of R-order four with reduced computational cost”, BIT Numer. Math., 49:2 (2009), 325–342 | DOI | MR | Zbl

[12] Bruns D. D., Bailey J. E., “Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state”, Chem. Eng. Sci., 32:3 (1977), 257–264 | DOI

[13] Argyros I. K., “Remarks on the convergence of Newton's method under Holder continuity conditions”, Tamkang J. Math., 23 (1992), 269–277 | MR | Zbl

[14] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl

[15] Ostrowski A. M., Solution of Equations and Systems of Equations, Academic Press, New York–London, 1966 | MR | Zbl

[16] Traub J. F., Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1982 | Zbl

[17] Grau-Sanchez M., Grau A., Noguera M., “On the computational efficiency index and some iterative methods for solving systems of nonlinear equations”, J. Comput. Appl. Math., 236 (2011), 1259–1266 | DOI | MR | Zbl

[18] Gautschi W., Numerical Analysis: An introduction, Birkhäuser, Boston, 1997 | MR | Zbl

[19] Sharma J. R., Gupta P., “An efficient fifth order method for solving systems of nonlinear equations”, J. Comput. Math. Appl., 67:3 (2014), 591–601 | DOI | MR | Zbl

[20] Chen L., Gu C., Ma Y., “Semilocal convergence for a fifth-order Newton's method using recurrence relations in Banach spaces”, J. Appl. Math., 2011 (2011), Article ID 786306 | MR

[21] Hernandez-Veron M. A., Martinez E., “On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions”, Numer. Algor., 70:2 (2015), 377–392 | DOI | MR | Zbl