Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 157-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is concerned with the study of semilocal convergence of a fifth-order method for solving nonlinear equations in Banach spaces under mild conditions. An existence and uniqueness theorem is proved and followed by error estimates. The computational superiority of the considered scheme over the identical order methods is also examined, which shows the efficiency of the present scheme from a computational point of view. Lastly, an application of the theoretical development is made in a nonlinear integral equation.
@article{SJVM_2017_20_2_a3,
     author = {J. P. Jaiswal},
     title = {Analysis of semilocal convergence in {Banach} spaces under relaxed condition and computational efficiency},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {157--168},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/}
}
TY  - JOUR
AU  - J. P. Jaiswal
TI  - Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 157
EP  - 168
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/
LA  - ru
ID  - SJVM_2017_20_2_a3
ER  - 
%0 Journal Article
%A J. P. Jaiswal
%T Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 157-168
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/
%G ru
%F SJVM_2017_20_2_a3
J. P. Jaiswal. Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a3/