Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_2_a1, author = {I. A. Blatov and A. I. Zadorin and E. V. Kitaeva}, title = {About the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {131--144}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a1/} }
TY - JOUR AU - I. A. Blatov AU - A. I. Zadorin AU - E. V. Kitaeva TI - About the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 131 EP - 144 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a1/ LA - ru ID - SJVM_2017_20_2_a1 ER -
%0 Journal Article %A I. A. Blatov %A A. I. Zadorin %A E. V. Kitaeva %T About the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 131-144 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a1/ %G ru %F SJVM_2017_20_2_a1
I. A. Blatov; A. I. Zadorin; E. V. Kitaeva. About the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 131-144. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a1/
[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248 | MR | Zbl
[2] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl
[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[4] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim pogranichnym sloem”, Zhurn. vychisl. matem. i mat. fiziki, 29:7 (1989), 963–977 | MR | Zbl
[5] Ahlberg J. H., Nilson E. N., Walsh J. L., The Theory of Splines and their Applications, Academic Press, New York, 1967 | MR | Zbl
[6] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR
[7] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR
[8] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[9] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 10:3 (2007), 267–275
[10] Zadorin A. I., “Interpolyatsiya Lagranzha i formuly Nyutona–Kotesa dlya funktsii s pogransloinoi sostavlyayuschei na kusochno-ravnomernykh setkakh”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 18:3 (2015), 289–303 | DOI | MR | Zbl
[11] Zadorin A. I., “Spline interpolation of functions with a boundary layer component”, Inter. J. Numer. Anal. Mod. Series B, 2:2–3 (2011), 262–279 | MR | Zbl
[12] Volkov Yu. S., “Interpolyatsiya splainami chetnoi stepeni po Subbotinu i po Marsdenu”, Ukrainskii matematicheskii zhurnal, 66:7 (2014), 891–908 | Zbl
[13] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific, Singapore, 2012 | MR | Zbl
[14] Linss T., “The necessity of Shishkin decompositions”, Applied Mathematics Letters, 14 (2001), 891–896 | DOI | MR | Zbl
[15] Volkov Yu. S., “O nakhozhdenii polnogo interpolyatsionnogo splaina cherez B-splainy”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 334–338 | MR | Zbl
[16] Volkov Yu. S., “Obtaining a banded system of equations in complete spline interpolation problem via B-splines basis”, Central Europen J. of Mathematics, 10:1 (2012), 352–356 | DOI | MR | Zbl
[17] Blatov I. A., Kitaeva E. V., “Skhodimost metoda adaptatsii setok N. S. Bakhvalova dlya singulyarno vozmuschennykh kraevykh zadach”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 19:1 (2016), 47–59 | DOI | MR | Zbl