Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_1_a7, author = {N. Choubey and J. P. Jaiswal}, title = {Two- and three-point with memory methods for solving nonlinear equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {91--106}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a7/} }
TY - JOUR AU - N. Choubey AU - J. P. Jaiswal TI - Two- and three-point with memory methods for solving nonlinear equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 91 EP - 106 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a7/ LA - ru ID - SJVM_2017_20_1_a7 ER -
N. Choubey; J. P. Jaiswal. Two- and three-point with memory methods for solving nonlinear equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 91-106. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a7/
[1] Wang X., Zhang T., “Higher-order Newton-type iterative methods with and without memory for solving nonlinear equations”, Math. Comm., 19 (2014), 91–109 | MR | Zbl
[2] Soleymani F., “Some optimal iterative methods and their with memory variants”, J. Egyp. Math. Soc., 21 (2013), 133–141 | DOI | MR | Zbl
[3] Kumar S., Kanwar V., Tomar S. K., Singh S., “Geometrically constructed families of Newton's method for unconstrained optimization and nonlinear equations”, Int. J. Math. Math. Sci., 2011 (2011), Article ID 972537 | MR
[4] Traub J. F., Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1964 | MR | Zbl
[5] Petkovic M. S., Neta B., Petcovic L. D., Dzunic J., Multipoint Methods for Solving Nonlinear Equations, Academic Press, New York, 2013 | MR | Zbl
[6] Behl R., Kanwar V., “New highly efficient families of higher-order methods for simple roots, permitting $f'(x_n)=0$”, Int. J. Math. Math. Sci., 2014 (2014), Article ID 264529 | DOI | MR | Zbl
[7] Ortega J., Rheinboldt W., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 2000 | MR
[8] Alefeld G., Herzberger J., Introduction to Interval Computation, Academic Press, New York, 1983 | MR
[9] Wang X., Zhang T., “A new family of Newton-type iterative methods with and without memory for solving nonlinear equations”, Calcolo, 51 (2014), 1–15 | DOI | MR | Zbl
[10] Wang X., Zhang T., “Some Newton-type iterative methods with and without memory for solving nonlinear equations”, Int. J. Comput. Meth., 11 (2013), 1–20 | MR
[11] Chun C., Lee M. Y., “A new optimal eighth-order family of iterative methods for the solution of nonlinear equations”, Appl. Math. Comput., 223 (2013), 506–519 | MR | Zbl
[12] Weerakoon S., Fernando T. G. I., “A variant of Newton's method with accelerated third-order convergence”, Appl. Math. Lett., 13 (2000), 87–93 | DOI | MR | Zbl