Semilocal convergence of a~continuation method in Banach spaces
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the semilocal convergence of a continuation method between two third-order iterative methods, namely, Halley's method and the convex acceleration of Newton's method, also known as super-Halley's method. This convergence analysis is discussed using a recurrence relations approach. This approach simplifies the analysis and leads to improved results. The convergence is established under the assumption that the second Fréchet derivative satisfies the Lipschitz continuity condition. An existence-uniqueness theorem is given. Also, a closed form of error bounds is derived in terms of a real parameter $\alpha\in[0,1]$. Two numerical examples are worked out to demonstrate the efficiency of our approach. On comparing the existence and uniqueness region and error bounds for the solution obtained by our analysis with those obtained by using majorizing sequences [15], we observed that our analysis gives better results. Further, we observed that for particular values of $\alpha$ our analysis reduces to Halley's method ($\alpha=0$) and convex acceleration of Newton's method ($\alpha=1$), respectively, with improved results.
@article{SJVM_2017_20_1_a5,
     author = {M. Prashanth and S. Motsa},
     title = {Semilocal convergence of a~continuation method in {Banach} spaces},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a5/}
}
TY  - JOUR
AU  - M. Prashanth
AU  - S. Motsa
TI  - Semilocal convergence of a~continuation method in Banach spaces
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 59
EP  - 75
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a5/
LA  - ru
ID  - SJVM_2017_20_1_a5
ER  - 
%0 Journal Article
%A M. Prashanth
%A S. Motsa
%T Semilocal convergence of a~continuation method in Banach spaces
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 59-75
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a5/
%G ru
%F SJVM_2017_20_1_a5
M. Prashanth; S. Motsa. Semilocal convergence of a~continuation method in Banach spaces. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a5/

[1] Traub J. F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, N.J., 1964 | MR | Zbl

[2] Ostrowski A. M., Solution of Equations and Systems of Equations, Academic Press, 1966 | MR | Zbl

[3] Rall L. B., Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, New York, 1969 | MR

[4] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, 1970 | MR | Zbl

[5] Garcia C. B., Zangwill W. I., Pathways to Solutions, Fixed Points, and Equilibria, Prentice-Hall, Englewood Cliffs, N.J., 1981 | Zbl

[6] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl

[7] Allgower E. L., Georg K., Numerical Continuation Methods: an Introduction, Springer-Verlag, New York, 1990 | MR | Zbl

[8] Candela V., Marquina A., “Recurrence relations for rational cubic methods. I: the Halley method”, Computing, 44 (1990), 169–184 | DOI | MR | Zbl

[9] Candela V., Marquina A., “Recurrence relations for rational cubic methods. II: the Chebyshev method”, Computing, 45 (1990), 355–367 | DOI | MR | Zbl

[10] Kincaid D., Cheney W., Numerical Analysis: Mathematics of Scientific Computing, Cole Publishing Company, Brooks, 1991 | MR | Zbl

[11] Ezquerro J. A., Gutiérrez J. M., Hernández M. A., “A construction procedure of iterative methods with cubical convergence”, Applied Mathematics and Computation, 85 (1997), 181–199 | DOI | MR | Zbl

[12] Hernández M. A., Gutiérrez J. M., “Third-order iterative methods for operators with bounded second derivative”, J. of Computational and Applied Mathematics, 82 (1997), 171–183 | DOI | MR | Zbl

[13] Gutiérrez J. M., Hernández M. A., “Recurrence relations for the Super–Halley method”, Computers Mathematics with Applications, 36 (1998), 1–8 | DOI | MR | Zbl

[14] Gutiérrez J. M., Hernández M. A., “An acceleration of Newton's method: Super–Halley method”, Applied Mathematics and Computation, 85 (2001), 223–239 | DOI | MR

[15] Ezquerro J. A., Hernández M. A., “A new class of third order methods in Banach spaces”, Bulletin of the Institute of Mathematics Academia Sinica, 31 (2003), 181–199 | MR

[16] Prashanth M., Gupta D. K., “A continuation method and its convergence for solving nonlinear equations in Banach spaces”, Int. J. of Computational Methods, 10 (2013), 1–23 | DOI | MR

[17] Yonghui Ling, Xiubin Xu, “On the semilocal convergence behavior for Halley's method”, Comput. Optim. App., 58 (2014), 597–618 | DOI | MR | Zbl