Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_1_a5, author = {M. Prashanth and S. Motsa}, title = {Semilocal convergence of a~continuation method in {Banach} spaces}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {59--75}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a5/} }
TY - JOUR AU - M. Prashanth AU - S. Motsa TI - Semilocal convergence of a~continuation method in Banach spaces JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 59 EP - 75 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a5/ LA - ru ID - SJVM_2017_20_1_a5 ER -
M. Prashanth; S. Motsa. Semilocal convergence of a~continuation method in Banach spaces. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a5/
[1] Traub J. F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, N.J., 1964 | MR | Zbl
[2] Ostrowski A. M., Solution of Equations and Systems of Equations, Academic Press, 1966 | MR | Zbl
[3] Rall L. B., Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, New York, 1969 | MR
[4] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, 1970 | MR | Zbl
[5] Garcia C. B., Zangwill W. I., Pathways to Solutions, Fixed Points, and Equilibria, Prentice-Hall, Englewood Cliffs, N.J., 1981 | Zbl
[6] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl
[7] Allgower E. L., Georg K., Numerical Continuation Methods: an Introduction, Springer-Verlag, New York, 1990 | MR | Zbl
[8] Candela V., Marquina A., “Recurrence relations for rational cubic methods. I: the Halley method”, Computing, 44 (1990), 169–184 | DOI | MR | Zbl
[9] Candela V., Marquina A., “Recurrence relations for rational cubic methods. II: the Chebyshev method”, Computing, 45 (1990), 355–367 | DOI | MR | Zbl
[10] Kincaid D., Cheney W., Numerical Analysis: Mathematics of Scientific Computing, Cole Publishing Company, Brooks, 1991 | MR | Zbl
[11] Ezquerro J. A., Gutiérrez J. M., Hernández M. A., “A construction procedure of iterative methods with cubical convergence”, Applied Mathematics and Computation, 85 (1997), 181–199 | DOI | MR | Zbl
[12] Hernández M. A., Gutiérrez J. M., “Third-order iterative methods for operators with bounded second derivative”, J. of Computational and Applied Mathematics, 82 (1997), 171–183 | DOI | MR | Zbl
[13] Gutiérrez J. M., Hernández M. A., “Recurrence relations for the Super–Halley method”, Computers Mathematics with Applications, 36 (1998), 1–8 | DOI | MR | Zbl
[14] Gutiérrez J. M., Hernández M. A., “An acceleration of Newton's method: Super–Halley method”, Applied Mathematics and Computation, 85 (2001), 223–239 | DOI | MR
[15] Ezquerro J. A., Hernández M. A., “A new class of third order methods in Banach spaces”, Bulletin of the Institute of Mathematics Academia Sinica, 31 (2003), 181–199 | MR
[16] Prashanth M., Gupta D. K., “A continuation method and its convergence for solving nonlinear equations in Banach spaces”, Int. J. of Computational Methods, 10 (2013), 1–23 | DOI | MR
[17] Yonghui Ling, Xiubin Xu, “On the semilocal convergence behavior for Halley's method”, Comput. Optim. App., 58 (2014), 597–618 | DOI | MR | Zbl