A modified dual scheme for solving an elastic crack problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 47-58
Voir la notice de l'article provenant de la source Math-Net.Ru
The dual scheme for solving a crack problem in terms of displacements is considered. The dual solution method is based on a modified Lagrangian functional. In addition, the method convergence is investigated under natural assumptions on $H^1$-regularity of the crack problem solution. The duality relation for the primal and dual problems has been proposed.
@article{SJVM_2017_20_1_a4,
author = {R. V. Namm and G. I. Tsoy},
title = {A modified dual scheme for solving an elastic crack problem},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {47--58},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a4/}
}
TY - JOUR AU - R. V. Namm AU - G. I. Tsoy TI - A modified dual scheme for solving an elastic crack problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 47 EP - 58 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a4/ LA - ru ID - SJVM_2017_20_1_a4 ER -
R. V. Namm; G. I. Tsoy. A modified dual scheme for solving an elastic crack problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a4/