The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 23-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the kinematics of the tsunami wave ray and the wavefront above an uneven bottom is studied. The formula to determine the wave height along a ray tube has been obtained. The exact analytical solution for the wave-ray trajectory above the parabolic bottom topography has been derived. Within the wave-ray approach this solution gives the possibility to determine the tsunami wave heights in an area with a parabolic bottom relief. The distribution of the wave-height maxima in the area with the parabolic bottom was compared to the one obtained by the numerical computation with a shallow-water model.
@article{SJVM_2017_20_1_a2,
     author = {An. G. Marchuk},
     title = {The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {23--35},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/}
}
TY  - JOUR
AU  - An. G. Marchuk
TI  - The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 23
EP  - 35
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/
LA  - ru
ID  - SJVM_2017_20_1_a2
ER  - 
%0 Journal Article
%A An. G. Marchuk
%T The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 23-35
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/
%G ru
%F SJVM_2017_20_1_a2
An. G. Marchuk. The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 23-35. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/

[1] Stoker Dzh. Dzh., Volny na vode, IL, M., 1959

[2] Marchuk An. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Sib. otd-nie, Novosibirsk, 1983

[3] Marchuk An. G., “Vychislenie vysoty tsunami, rasprostranyayuscheisya nad naklonnym dnom, v luchevom priblizhenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 18:4 (2015), 377–388 | DOI | MR | Zbl

[4] Romanov V. G., Obratnye zadachi dlya differentsialnykh uravnenii, Uchebnoe posobie, NGU, Novosibirsk, 1983

[5] Tsetsokho V. A., Belonosova A. V., Belonosov A. S., “Formuly dlya vychisleniya lineinogo raskhozhdeniya volnovykh luchei v trëkhmernoi blochno-neodnorodnoi gradientnoi srede”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:3 (2009), 325–339 | Zbl

[6] Belonosov A. S., Formuly dlya vychisleniya raskhozhdeniya volnovykh luchei v pryamougolnoi sisteme koordinat, Preprint No 396, VTs SO AN SSSR, Novosibirsk, 1982

[7] Kabanikhin S. I., Krivorot'ko O. I., “A numerical method for determining the amplitude of a wave edge in shallow water approximation”, Applied Computational Mathematics, 12:1 (2013), 91–96 | MR | Zbl

[8] Krivorot'ko O. I., “Fast algorithm for calculation of the moving tsunami wave height”, Tr. pyatoi Mezhdunar. molodezhnoi nauchnoi shkoly-konferentsii “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach”, Sibirskie elektronnye matematicheskie izvestiya (Novosibirsk), 11 (2014), 115–120

[9] Dobrokhotov S. Yu., Nazaikinskii V. E., Tirotstsi B., “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl

[10] Dobrokhotov S. Yu., Tirotstsi B., “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt x$”, UMN, 65:1(391) (2010), 185–186 | DOI | MR | Zbl

[11] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987

[12] Kravtsov Yu. A., Orlov Yu. I., Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980

[13] Titov V. V., Gonzalez F., Implementation and Testing of the Method of Splitting Tsunami (MOST), NOAA Technical Memorandum ERL PMEL-112, Washington, DC, 1997