The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 23-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the kinematics of the tsunami wave ray and the wavefront above an uneven bottom is studied. The formula to determine the wave height along a ray tube has been obtained. The exact analytical solution for the wave-ray trajectory above the parabolic bottom topography has been derived. Within the wave-ray approach this solution gives the possibility to determine the tsunami wave heights in an area with a parabolic bottom relief. The distribution of the wave-height maxima in the area with the parabolic bottom was compared to the one obtained by the numerical computation with a shallow-water model.
@article{SJVM_2017_20_1_a2,
     author = {An. G. Marchuk},
     title = {The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {23--35},
     year = {2017},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/}
}
TY  - JOUR
AU  - An. G. Marchuk
TI  - The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 23
EP  - 35
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/
LA  - ru
ID  - SJVM_2017_20_1_a2
ER  - 
%0 Journal Article
%A An. G. Marchuk
%T The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 23-35
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/
%G ru
%F SJVM_2017_20_1_a2
An. G. Marchuk. The assessment of tsunami heights above the parabolic bottom relief within the wave-ray approach. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 23-35. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a2/

[1] Stoker Dzh. Dzh., Volny na vode, IL, M., 1959

[2] Marchuk An. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Sib. otd-nie, Novosibirsk, 1983

[3] Marchuk An. G., “Vychislenie vysoty tsunami, rasprostranyayuscheisya nad naklonnym dnom, v luchevom priblizhenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 18:4 (2015), 377–388 | DOI | MR | Zbl

[4] Romanov V. G., Obratnye zadachi dlya differentsialnykh uravnenii, Uchebnoe posobie, NGU, Novosibirsk, 1983

[5] Tsetsokho V. A., Belonosova A. V., Belonosov A. S., “Formuly dlya vychisleniya lineinogo raskhozhdeniya volnovykh luchei v trëkhmernoi blochno-neodnorodnoi gradientnoi srede”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:3 (2009), 325–339 | Zbl

[6] Belonosov A. S., Formuly dlya vychisleniya raskhozhdeniya volnovykh luchei v pryamougolnoi sisteme koordinat, Preprint No 396, VTs SO AN SSSR, Novosibirsk, 1982

[7] Kabanikhin S. I., Krivorot'ko O. I., “A numerical method for determining the amplitude of a wave edge in shallow water approximation”, Applied Computational Mathematics, 12:1 (2013), 91–96 | MR | Zbl

[8] Krivorot'ko O. I., “Fast algorithm for calculation of the moving tsunami wave height”, Tr. pyatoi Mezhdunar. molodezhnoi nauchnoi shkoly-konferentsii “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach”, Sibirskie elektronnye matematicheskie izvestiya (Novosibirsk), 11 (2014), 115–120

[9] Dobrokhotov S. Yu., Nazaikinskii V. E., Tirotstsi B., “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl

[10] Dobrokhotov S. Yu., Tirotstsi B., “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt x$”, UMN, 65:1(391) (2010), 185–186 | DOI | MR | Zbl

[11] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987

[12] Kravtsov Yu. A., Orlov Yu. I., Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980

[13] Titov V. V., Gonzalez F., Implementation and Testing of the Method of Splitting Tsunami (MOST), NOAA Technical Memorandum ERL PMEL-112, Washington, DC, 1997