Sequential data assimilation algorithms in air quality monitoring models based on weak-constraint variational principle
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 401-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

Data assimilation problem for non-stationary model is considered as a sequence of the linked inverse problems which reconstruct, taking into account the different sets of measurement data, the space-time structure of the state functions. Data assimilation is carried out together with the identification of additional unknown function, which we interpret as a function of model uncertainty. The variational principle serves as a basis for constructing algorithms. Different versions of the algorithms are presented and analyzed. Based on the discrepancy principle, a computationally efficient algorithm for data assimilation in a locally one-dimensional case is constructed. The theoretical estimation of its performance is obtained. This algorithm is one of the core components of the data assimilation system in the frames of splitting scheme for the non-stationary three-dimensional transport and transformation models of atmospheric chemistry.
@article{SJVM_2016_19_4_a4,
     author = {A. V. Penenko and V. V. Penenko and E. A. Tsvetova},
     title = {Sequential data assimilation algorithms in air quality monitoring models based on weak-constraint variational principle},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {401--418},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a4/}
}
TY  - JOUR
AU  - A. V. Penenko
AU  - V. V. Penenko
AU  - E. A. Tsvetova
TI  - Sequential data assimilation algorithms in air quality monitoring models based on weak-constraint variational principle
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 401
EP  - 418
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a4/
LA  - ru
ID  - SJVM_2016_19_4_a4
ER  - 
%0 Journal Article
%A A. V. Penenko
%A V. V. Penenko
%A E. A. Tsvetova
%T Sequential data assimilation algorithms in air quality monitoring models based on weak-constraint variational principle
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 401-418
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a4/
%G ru
%F SJVM_2016_19_4_a4
A. V. Penenko; V. V. Penenko; E. A. Tsvetova. Sequential data assimilation algorithms in air quality monitoring models based on weak-constraint variational principle. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 401-418. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a4/

[1] Agoshkov V. I., Metody optimalnogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, M., 2003 | MR

[2] Bensusan A., Lions Zh.-L., Temam R., “Metody dekompozitsii, koordinatsii i ikh prilozheniya”, Metody vychislitelnoi matematiki, Nauka, Sib. otd-nie, Novosibirsk, 1975, 144–274 | MR

[3] Braison A., Yu Shi Kho, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972

[4] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[5] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Sib. otd-nie, Novosibirsk, 1988 | MR

[6] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[7] Marchuk G. I., “O postanovke nekotorykh obratnykh zadach”, Doklady AN SSSR, 156:3 (1964), 503–506 | Zbl

[8] Marchuk G. I., Chislennoe reshenie zadach dinamiki atmosfery i okeana, Gidrometeoizdat, L., 1974

[9] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[10] Morozov V. A., “O printsipe nevyazki pri reshenii operatornykh uravnenii metodom regulyarizatsii”, Zhyrn. vychisl. matem. i mat. fiziki, 8:2 (1968), 295–309 | MR | Zbl

[11] Penenko A. V., “Nekotorye teoreticheskie i prikladnye voprosy posledovatelnogo variatsionnogo usvoeniya dannykh”, Izbrannye doklady Mezhdunarodnoi konferentsii po izmereniyam, modelirovaniyu i informatsionnym sistemam dlya izucheniya okruzhayuschei sredy, ENVIROMIS-2006, chast 2, Vychislitelnye tekhnologii, 11, Tomsk, Rossiya, 2006, 35–40 | Zbl

[12] Penenko V. V., “Vychislitelnye aspekty modelirovaniya dinamiki atmosfernykh protsessov i otsenki vliyaniya razlichnykh faktorov na dinamiku atmosfery”, Nekotorye problemy vychislitelnoi i prikladnoi matematiki, ed. M. M. Lavrentev, Nauka, Novosibirsk, 1975, 61–77

[13] Penenko V. V., Metody chislennogo modelirovaniya atmosfernykh protsessov, Gidrometeoizdat, L., 1981 | MR

[14] Penenko V. V., Obraztsov N. N., “Variatsionnyi metod soglasovaniya polei meteorologicheskikh elementov”, Meteorologiya i gidrologiya, 1976, no. 11, 1–11

[15] Penenko V. V., Sistemnaya organizatsiya matematicheskikh modelei dlya zadach fiziki atmosfery, okeana i okhrany okruzhayuschei sredy, Preprint No 619, AN SSSR, Sib. otd-nie, VTs, Novosibirsk, 1985 | MR

[16] Penenko V. V., “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:4 (2009), 421–434 | Zbl

[17] Penenko A. V., Penenko V. V., “Pryamoi metod variatsionnogo usvoeniya dannykh dlya modelei konvektsii-diffuzii na osnove skhemy rasschepleniya”, Vychislitelnye tekhnologii, 19:4 (2014), 69–83 | Zbl

[18] Penenko V. V., Tsvetova E. A., Penenko A. V., “Metody sovmestnogo ispolzovaniya modelei i dannykh nablyudenii v ramkakh variatsionnogo podkhoda dlya prognozirovaniya pogody i kachestva sostava atmosfery”, Meteorologiya i gidrologiya, 2015, no. 6, 13–24

[19] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 2001

[20] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR

[21] Shutyaev V. P., Operatory upravleniya i iteratsionnye algoritmy v zadachakh variatsionnogo usvoeniya dannykh, Nauka, M., 2001 | MR

[22] Blum J., Le DImet F.-X., Navon I. M., “Data assimilation for geophysical fluids”, Handbook of numerical analysis (Elsevier Science), 14, Special Volume, 2008, 377–434

[23] Bocquet M., Elbern H., Eskes H. et al., “Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models”, Atmos. Chem. Phys., 15:10 (2015), 5325–5358 http://www.atmos-chem-phys.net/15/5325/2015/ | DOI

[24] Elbern H., Strunk A., Schmidt H., Talagrand O., “Emission rate and chemical state estimation by 4-dimensional variational inversion”, Atmos. Chem. Phys., 7 (2007), 3749–3769 | DOI

[25] Freitag M. A., Potthast R. W. E., “Synergy of inverse problems and data assimilation techniques”, Large Scale Inverse Problems Computational Methods and Applications in the Earth Sciences, Radon Series on Computational and Applied Mathematics, 13, 2013, 1–54 | MR

[26] Kalman R. E., “A new approach to linear filtering and prediction problems”, Transactions of the ASME – Journal of Basic Engineering. Ser. D, 82 (1960), 35–45 | DOI

[27] Kukkonen J. et al., “A review of operational, regional-scale, chemical weather forecasting models in Europe”, Atmos. Chem. Phys., 12 (2012), 1–87 | DOI

[28] Lahoz W., Khattarov B., Menhard R., Data Assimilation. Making Sense of Observations, Springer, 2010 | Zbl

[29] Le Dimet F.-X., Talagrand O., “Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects”, Tellus A, 38 (1986), 97–110 | DOI

[30] Marchuk G. I., Penenko V. V., “Application of perturbation theory to problems of simulation of atmospheric processes”, Monsoon dynamics, Joint ITAM/IUGG Intern. Symp. on Monsoon dynamics (Delhi, 1977), eds. J. Lighthill, R. Pearce, Cambridge University Press, New York, 1981, 639–655 | DOI

[31] Marchuk G. I., Penenko V. V., “Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment”, Modelling and optimization of complex systems, Proc. of the IFIP-TC7 Working conf., ed. G. I. Marcuk, Springer, New York, 1978, 240–252 | MR

[32] Navon I. M., “Data assimilation for numerical weather prediction: a review”, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, v. 1, Springer, 2009, 21–65 | DOI

[33] Penenko V. V., Tsvetova E. A., Penenko A. V., “Variational approach and Euler's integrating factors for environmental studies”, Computers and Mathematics with Applications, 67:12 (2014), 2240–2256 | DOI | MR

[34] Penenko A., Penenko V., Nuterman R., et al., “Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model”, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics (November 19, 2015), Proc. SPIE, 9680, 2015, 968076, 12 pp. | DOI

[35] Talagrand O., Courtier P., “Variational assimilation of meteorological observations with the adjoint vorticity equation”, Quart. J. Roy. Meteor. Soc., 113:I, Theory (1987), 1311–1328 | DOI

[36] Sandu A., Tianfeng C., “Chemical data assimilation – an overview”, Atmosphere, 2 (2011), 426–463 | DOI