Optimal finite difference schemes for the wave equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 385-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the solution of the two-dimensional wave equation with the use of the Laguerre transform. The optimal parameters of finite difference schemes for this equation have been obtained. Numerical values of these optimal parameters are specified. The finite difference schemes of second order with optimal parameters give the accuracy of the solution to the equations close to the accuracy of the solution by the scheme of fourth order. It is shown that using the Laguerre decomposition, the number of optimal parameters in comparison with the Fourier decomposition can be reduced. This reduction leads to simplification of finite difference schemes and to reduction of the number of computations, i.e. the efficiency of the algorithm.
@article{SJVM_2016_19_4_a3,
     author = {A. F. Mastryukov},
     title = {Optimal finite difference schemes for the wave equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {385--399},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a3/}
}
TY  - JOUR
AU  - A. F. Mastryukov
TI  - Optimal finite difference schemes for the wave equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 385
EP  - 399
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a3/
LA  - ru
ID  - SJVM_2016_19_4_a3
ER  - 
%0 Journal Article
%A A. F. Mastryukov
%T Optimal finite difference schemes for the wave equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 385-399
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a3/
%G ru
%F SJVM_2016_19_4_a3
A. F. Mastryukov. Optimal finite difference schemes for the wave equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 385-399. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a3/

[1] Bergmann T., Robertson J. O. A., Holliger K., “Finite-difference modeling of electromagnetic wave in dispersive and attenuating media”, Geophysics, 63:3 (1998), 856–867 | DOI

[2] Bergmann T., Blanch J. O., Robertsson J. O. A., Holliger K., “A simplified Lax–Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave propagation in frequency-dependent media”, Geophysics, 64:5 (1999), 1369–1377 | DOI

[3] Luebbers R., Hansberger F. P., “FDTD for $N$th-order dispersive media”, IEEE Trans. Antennas Propag., 40:11 (1992), 1297–1301 | DOI

[4] Turner G., Siggins A. F., “Constant $Q$ attenuation of subsurface radar pulses”, Geophysics, 59:8 (1994), 1192–1200 | DOI

[5] A. G. Tarkhov, Elektrorazvedka, Spravochnik geofizika, Nedra, M., 1980

[6] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[7] Jo C. H., Shin C., Suh H. S., “An optimal $9$-point, finite-difference, frequency-space, 2-D scalar wave extrapolator”, Geophysics, 61:2 (1996), 529–537 | DOI

[8] Chen J. B., “An average-derivative optimal scheme for frequency-domain scalar wave equation”, Geophysics, 77:6 (2012), T201–T210 | DOI

[9] Konyukh G. V., Mikhailenko B. G., “Primenenie integralnogo preobrazovaniya Lagerra pri reshenii dinamicheskikh zadach seismiki”, Mat. modelirovanie v geofizike, Tr. IVM i MG, 5, Novosibirsk, 1998, 107–112

[10] Mikhailenko B. G., “Spectral Laguerre method for the approximate solution of time dependent problems”, Applied Mathematics Letters, 12:4 (1999), 105–110 | DOI | MR | Zbl

[11] Mastryukov A. F., Mikhailenko B. G., “Chislennoe modelirovanie rasprostraneniya elektromagnitnykh voln v neodnorodnykh sredakh s zatukhaniem na osnove spektralnogo preobrazovaniya Lagerra”, Geologiya i geofizika, 44:10 (2003), 1060–1069

[12] Mastryukov A. F., Mikhailenko B. G., “Modelirovanie rasprostraneniya elektromagnitnykh voln v relaksatsionnykh sredakh na osnove spektralnogo preobrazovaniya Lagerra”, Geologiya i geofizika, 47:3 (2006), 397–407

[13] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[14] Kane Ye., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas Propag., 14:3 (1966), 302–307 | DOI | Zbl

[15] Saenger E., Gold N., Shapiro S., “Modeling the propagation of elastic waves using a modified finite-difference grid”, Wave motion, 31:1 (2000), 77–92 | DOI | MR | Zbl

[16] Ghrist M., Fornberg B., Driscoll T. A., “Staggered time integrator for wave equations”, SIAM J. Numer. Anal., 38:3 (2000), 718–741 | DOI | MR | Zbl

[17] Alford R. M., Kelly K. R., Boore D. M., “Accuracy of finite-difference modeling of the acoustic wave equation”, Geophysics, 39:6 (1974), 834–842 | DOI