Regularizing algorithms with optimal and extra-optimal quality
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 371-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a special quality for approximate solutions to ill-posed inverse problems is introduced. A posteriori estimates of the quality are studied for different regularizing algorithms (RA). Examples of typical quality functionals are provided, which arise in solving linear and nonlinear inverse problems. The techniques and the numerical algorithm for calculating a posteriori quality estimates for approximate solutions of general nonlinear inverse problems are developed. The new notions of optimal and extra-optimal quality of a regularizing algorithm are introduced. The theory of regularizing algorithms with optimal and extraoptimal quality is presented, which includes an investigation of optimal properties for estimation functions of the quality. Examples of regularizing algorithms with extra-optimal quality of solutions are given, as well as examples of regularizing algorithms without such property. The results of numerical experiments illustrate a posteriori quality estimation.
@article{SJVM_2016_19_4_a2,
     author = {A. S. Leonov},
     title = {Regularizing algorithms with optimal and extra-optimal quality},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {371--383},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a2/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Regularizing algorithms with optimal and extra-optimal quality
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 371
EP  - 383
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a2/
LA  - ru
ID  - SJVM_2016_19_4_a2
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Regularizing algorithms with optimal and extra-optimal quality
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 371-383
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a2/
%G ru
%F SJVM_2016_19_4_a2
A. S. Leonov. Regularizing algorithms with optimal and extra-optimal quality. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 371-383. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a2/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[3] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[4] Vainikko G. M., Metody resheniya lineinykh nekorrektno postavlennykh zadach v gilbertovykh prostranstvakh, Izd-vo TGU, Tartu, 1982 | MR

[5] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[6] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektykh zadach, Nauka, M., 1989 | MR

[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[8] Engl H. W., Hanke M., Neubauer A., Regularization of Inverse Problems, Kluwer, Dordrecht, 1996 | MR | Zbl

[9] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, Knizhnyi dom “LIBROKOM”, M., 2009

[10] Leonov A. S., “Ob aposteriornykh otsenkakh tochnosti resheniya lineinykh nekorrektno postavlennykh zadach i ekstraoptimalnykh regulyarizuyuschikh algoritmakh”, Vychisl. metody i programmirovanie, 11:1 (2010), 14–24

[11] Leonov A. S., “Ekstraoptimalnye aposteriornye otsenki tochnosti resheniya nekorrektnykh zadach prodolzheniya potentsialnykh geofizicheskikh polei”, Fizika Zemli, 2011, no. 6, 69–78

[12] Leonov A. S., “Aposteriornye otsenki tochnosti resheniya nekorrektno postavlennykh obratnykh zadach i ekstraoptimalnye regulyarizuyuschie algoritmy ikh resheniya”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 15:1 (2012), 85–100

[13] Leonov A. S., “Extra-optimal methods for solving ill-posed problems”, J. of Inverse and Ill-posed Problems, 20:5–6 (2012), 637–665 | MR | Zbl

[14] Leonov A. S., “Locally extra-optimal regularizing algorithms”, J. of Inverse and Ill-posed Problems, 22:5 (2014), 713–737 | DOI | MR | Zbl

[15] Leonov A. S., “Potochechno ekstraoptimalnye regulyarizuyuschie algoritmy”, Vychisl. metody i programmirovanie, 14:2 (2013), 215–228

[16] Vinokurov V. A., Gaponenko Yu. L., “Aposteriornye otsenki resheniya nekorrektnykh obratnykh zadach”, DAN SSSR, 263:2 (1982), 277–280 | MR | Zbl

[17] Dorofeev K. Yu., Titarenko V. N., Yagola A. G., “Algoritmy postroeniya aposteriornykh otsenok pogreshnostei dlya nekorrektnykh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 43:1 (2003), 12–25 | MR | Zbl

[18] Yagola A. G., Nikolaeva N. N., Titarenko V. N., “Otsenka pogreshnosti resheniya uravneniya Abelya na mnozhestvakh monotonnykh i vypuklykh funktsii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 6:2 (2003), 171–180 | Zbl

[19] Bakushinskii A. B., “Aposteriornye otsenki tochnosti dlya priblizhennykh reshenii neregulyarnykh operatornykh uravnenii”, Dokl. RAN, 437:4 (2011), 439–440 | MR

[20] Bakushinskii A. B., Smirnova A., Liu H., “A posteriori error analysis for unstable models”, J. of Inverse and Ill-posed Problems, 20:4 (2012), 411–428 | MR

[21] Bakushinskii A. B., Leonov A. S., “Novye aposteriornye otsenki pogreshnosti priblizhennykh reshenii neregulyarnykh operatornykh uravnenii”, Vychisl. metody i programmirovanie, 15:2 (2014), 359–369