Evaluation of statistical error when calculating velocity and temperature components by the direct simulation Monte Carlo method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 317-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

The direct simulation Monte Carlo method is now widely used to solve the problems of rarefied gas dynamics. While solving stationary problems a special feature of the method is using dependent sample values of random variables to calculate macroparameters of a gas flow. In this paper, the possibility of using the results of statistical physics to estimate the statistical error of the DSMC method is theoretically analyzed. A simple approach to approximate evaluating the statistical error while calculating components of the velocity and temperature is proposed. The approach is tested on a number of problems.
@article{SJVM_2016_19_3_a5,
     author = {M. Yu. Plotnikov and E. V. Shkarupa},
     title = {Evaluation of statistical error when calculating velocity and temperature components by the direct simulation {Monte} {Carlo} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {317--330},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a5/}
}
TY  - JOUR
AU  - M. Yu. Plotnikov
AU  - E. V. Shkarupa
TI  - Evaluation of statistical error when calculating velocity and temperature components by the direct simulation Monte Carlo method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 317
EP  - 330
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a5/
LA  - ru
ID  - SJVM_2016_19_3_a5
ER  - 
%0 Journal Article
%A M. Yu. Plotnikov
%A E. V. Shkarupa
%T Evaluation of statistical error when calculating velocity and temperature components by the direct simulation Monte Carlo method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 317-330
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a5/
%G ru
%F SJVM_2016_19_3_a5
M. Yu. Plotnikov; E. V. Shkarupa. Evaluation of statistical error when calculating velocity and temperature components by the direct simulation Monte Carlo method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 317-330. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a5/

[1] Bird G. A., “Perception of numerical methods in rarefied gasdynamics”, Proc. of 16-th Int. Symp. on Rarefied Gas Dynamics, eds. E. P. Muntz, D. P. Weaver, D. H. Campbell, American Institute of Aeronautics and Astronautics, Washington, DC, 1989, 211–226

[2] Ivanov M. S., Rogasinsky S. V., “Analysis of the numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics”, Soviet J. Numer. Anal. Math. Modelling, 3:6 (1988), 453–465 | DOI | MR | Zbl

[3] Titarev V. A., Shakhov E. M., “Effektivnyi metod resheniya zadachi o techenii razrezhennogo gaza v ploskom kanale bolshoi konechnoi dliny”, Zhurn. vychisl. matem. i mat. fiziki, 52:2 (2012), 288–303 | MR | Zbl

[4] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, Zhurn. vychisl. matem. i mat. fiziki, 46:2 (2006), 329–343 | MR | Zbl

[5] Bird G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994 | MR

[6] J. Fan (ed.), Proc. of 29-th Int. Symp. on Rarefied Gas Dynamics (Xi'an, China, July 13–18, 2014), AIP Conf. Proc., 1628, 2014

[7] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd. tsentr “Akademiya”, M., 2006

[8] Hadjiconstantinou N., Garcia A., Bazant M., He G., “Statistical error in particle simulations of hydrodynamic phenomena”, J. Comp. Phys., 187 (2003), 274–297 | DOI | MR | Zbl

[9] Rogasinsky S. V., Levin D. A., Ivanov M. S., “Statistical errors of DSMC results for rarefied gas flows”, Proc. of 25-th Int. Symp. on Rarefied Gas Dynamics, eds. A. K. Rebrov, M. S. Ivanov, Publ. House SB RAS, Novosibirsk, 2007, 391–395

[10] Plotnikov M. Yu., Shkarupa E. V., “Some approaches to error analysis and optimization of the DSMC method”, Russ. J. Numer. Anal. Math. Model., 25:2 (2010), 147–167 | DOI | MR | Zbl

[11] Plotnikov M. Yu., Shkarupa E. V., “Comparison of different approaches to evaluation of statistical error of the DSMC method”, Proc. 28-th Int. Symp. on Rarefied Gas Dynamics (Melville, New York, July 9–13, 2012), v. 1, AIP Conf. Proc., 1501, eds. M. Mareschal, A. Santos, 2012, 503–510 | DOI

[12] Garcia A., “Estimating hydrodynamic quantities in the presence of microscopic fluctuations”, Commun. Appl. Math. Comput. Sci., 1 (2006), 53–78 | DOI | MR | Zbl

[13] Plotnikov M. Yu., Shkarupa E. V., “Theoretical and numerical analysis of approaches to evaluation of statistical error of the DSMC method”, Comput. Fluids, 105 (2014), 251–261 | DOI | MR

[14] Nagaev S. V., “Nekotorye predelnye teoremy dlya odnorodnykh tsepei Markova”, Teoriya veroyatnosti i ee primeneniya, 2:4 (1957), 389–416 | MR

[15] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[16] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Chast 1, Nauka, M., 1976 | MR

[17] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[18] Plotnikov M. Yu., Shkarupa E. V., “Selection of sampling numerical parameters for the DSMC method”, Comput. Fluids, 58 (2012), 102–111 | DOI | MR

[19] Plotnikov M. Yu., Shkarupa E. V., “Kombinirovannyi podkhod k otsenivaniyu statisticheskoi pogreshnosti metoda pryamogo statisticheskogo modelirovaniya”, Zhurn. vychisl. matem. i mat. fiziki, 55:11 (2015), 1938–1951 | DOI | MR | Zbl