Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_3_a2, author = {L. A. Krukier and T. S. Martynova}, title = {Preconditioning of {GMRES} by the {skew-Hermitian} iterations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {267--279}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a2/} }
TY - JOUR AU - L. A. Krukier AU - T. S. Martynova TI - Preconditioning of GMRES by the skew-Hermitian iterations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 267 EP - 279 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a2/ LA - ru ID - SJVM_2016_19_3_a2 ER -
L. A. Krukier; T. S. Martynova. Preconditioning of GMRES by the skew-Hermitian iterations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 267-279. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a2/
[1] Benzi M., Golub G. H., Liesen J., “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | MR | Zbl
[2] Bychenkov Yu. V., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, BINOM, M., 2010
[3] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. VUZov. Matem., 1979, no. 7, 41–52 | MR | Zbl
[4] Krukier L. A., “Kososimmetrichnye iteratsionnye metody resheniya statsionarnogo uravneniya konvektsii-diffuzii s malym parametrom pri starshei proizvodnoi”, Izv. VUZov. Matem., 1997, no. 4, 77–85 | MR | Zbl
[5] Krukier L. A., “Convergence acceleration of triangular iterative methods based on the skew-symmetric part of the matrix”, Appl. Numer. Mathem., 30 (1999), 281–290 | DOI | MR | Zbl
[6] Bochev M. A., Krukier L. A., “Ob iteratsionnom reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 31:11 (1997), 1283–1293 | MR | Zbl
[7] Chikina L. G., Krukier B. L., “Solution of linear equation systems with a dominant skew-symmetric part using the product triangular iterative method”, Comput. Methods in Appl. Mathem., 3:4 (2003), 647–650 | MR | Zbl
[8] Bai Z. Z., Krukier L. A., Martynova T. S., “Dvukhshagovye iteratsionnye metody resheniya statsionarnogo uravneniya konvektsii-diffuzii s malym parametrom pri starshei proizvodnoi na ravnomernoi setke”, Zhurn. vychisl. matem. i mat. fiziki, 46:2 (2006), 295–306 | MR | Zbl
[9] Krukier L. A., Martinova T. S., Bai Z.-Z., “Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems”, J. of Comput. and Appl. Mathem., 232:1 (2009), 3–16 | DOI | MR | Zbl
[10] Krukier L. A., Krukier B. L., Ren Z.-R., “Generalized skew-Hermitian triangular splitting iteration methods for saddle-point linear systems”, Numer. Linear Algebra Appl., 21 (2014), 152–170 | DOI | MR | Zbl
[11] Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1995
[12] Bai Z.-Z., Golub G. H., Pan J.-Y., “Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems”, Numerische Mathematik, 98 (2004), 1–32 | DOI | MR | Zbl
[13] Benzi M., Golub G. H., “A preconditioner for generalized saddle point problems”, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41 | DOI | MR | Zbl
[14] Golub G. H., Greif C., “On solving block-structured indefinite linear systems”, SIAM J. on Scientific Computing, 24 (2003), 2076–2092 | DOI | MR | Zbl
[15] Bai Z.-Z., Sun J., Wang D., “A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations”, Comp. Math. Appl., 32:12 (1996), 51–76 | DOI | MR | Zbl
[16] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999
[17] Bai Z.-Z., Parlett B. N., Wang Z.-Q., “On generalized successive overrelaxation methods for augmented linear systems”, Numerische Mathematik, 102 (2005), 1–38 | DOI | MR | Zbl