The search for admissible solutions by the interior point algorithms
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 249-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of interior point algorithms for the linear programming problems is considered. In these algorithms, the entering into the domain of admissible solution of the original problem is represented as optimization process of the extended problem. This extension is realized by adding just one new variable. The main objective of the paper is to give a theoretical justification of the proposed procedure of entering into the feasible domain of the original problem, under the assumption of non-degeneracy of the extended problem. Particularly, we prove that given the constraints of the original problem being consistent, the procedure leads to a relative interior point of the feasible solutions domain.
@article{SJVM_2016_19_3_a1,
     author = {V. I. Zorkaltsev},
     title = {The search for admissible solutions by the interior point algorithms},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {249--265},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a1/}
}
TY  - JOUR
AU  - V. I. Zorkaltsev
TI  - The search for admissible solutions by the interior point algorithms
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 249
EP  - 265
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a1/
LA  - ru
ID  - SJVM_2016_19_3_a1
ER  - 
%0 Journal Article
%A V. I. Zorkaltsev
%T The search for admissible solutions by the interior point algorithms
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 249-265
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a1/
%G ru
%F SJVM_2016_19_3_a1
V. I. Zorkaltsev. The search for admissible solutions by the interior point algorithms. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 249-265. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a1/

[1] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya: algoritmy metoda vnutrennikh tochek, Nauka, Novosibirsk, 1980 | MR

[2] Dikin I. I., “O skhodimosti odnogo iteratsionnogo protsessa”, Upravlyaemye sistemy, 12, IM SO AN SSSR, Novosibirsk, 1974, 54–60 | MR

[3] Zorkaltsev V. I., Metod otnositelno vnutrennikh tochek, Ser. preprintov “Avtomatizatsiya nauchnykh issledovanii”, 7, Komi filial AN SSSR, Syktyvkar, 1984

[4] Zorkaltsev V. I., Metody prognozirovaniya i analiza effektivnosti funktsionirovaniya sistemy toplivosnabzheniya, Nauka, M., 1988

[5] Zorkaltsev V. I., “Klass algoritmov vnutrennikh tochek”, Zhurn. vychisl. matem. i mat. fiziki, 49:12 (2004), 2114–2130 | MR

[6] Antsyz S. M., Dikin I. I., “Ob odnom chislennom metode resheniya zadachi lineinogo programmirovaniya v nekotorykh ee obobschenii”, Upravlyaemye sistemy, 3, IM SO AN SSSR, Novosibirsk, 1969, 54–56

[7] Evtushenko Yu. G., Zhadan V. G., “Relaksatsionnyi metod resheniya zadach nelineinogo programmirovaniya”, Zhurn. vychisl. matem. i mat. fiziki, 17:4 (1977), 890–904 | MR | Zbl

[8] Vanderbei R. J., Meketon M. S., Freedman B. A., “Modification of Karmarkar's linear programming algorithm”, Algorithmika, 1:1 (1986), 395–407 | DOI | MR | Zbl

[9] Barnes E. R., “A variation on Karmarkar's algorithm for solving linear problems”, Mathematical Programming, 36:2 (1986), 174–182 | DOI | MR | Zbl

[10] Alder I., Rende M. G., Veiga G., “An implementation of Karmarkar's algorithm for linear programming”, Mathematical Programming. Ser. A, 44:3 (1989), 297–335 | MR

[11] Monma C. L., Morton A. J., “Computational experience with a dual affino variant of Karmarkar's method for linear programming”, Operations Research Letters, 6:6 (1987), 261–267 | DOI | MR | Zbl

[12] Rokafellar R., Vypuklyi analiz, Mir, M., 1973