The study of increased order grid-characteristic methods on unstructured grids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 223-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the grid-characteristic methods for solving hyperbolic systems using a high order interpolation on unstructured tetrahedral and triangular grids for approximation. We consider the interpolation with orders from the first to the fifth included. Also, one-dimensional finite difference schemes appropriate for the considered methods are given. We study these schemes in terms of stability. The grid-characteristic method on unstructured triangular and tetrahedral grids are successfully used for solving the seismic prospecting problems, including, seismic prospecting in the conditions of the Arctic shelf and permafrost, as well as for solving seismic problems, problems of dynamic deformation and destruction, studying anisotropic composite materials.
@article{SJVM_2016_19_2_a7,
     author = {A. V. Favorskaya and I. B. Petrov},
     title = {The study of increased order grid-characteristic methods on unstructured grids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {223--233},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/}
}
TY  - JOUR
AU  - A. V. Favorskaya
AU  - I. B. Petrov
TI  - The study of increased order grid-characteristic methods on unstructured grids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 223
EP  - 233
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/
LA  - ru
ID  - SJVM_2016_19_2_a7
ER  - 
%0 Journal Article
%A A. V. Favorskaya
%A I. B. Petrov
%T The study of increased order grid-characteristic methods on unstructured grids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 223-233
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/
%G ru
%F SJVM_2016_19_2_a7
A. V. Favorskaya; I. B. Petrov. The study of increased order grid-characteristic methods on unstructured grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 223-233. http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/

[1] Sheriff R., Geldart L., Seismorazvedka, Mir, M., 1987

[2] Petrov I. B., Favorskaya A. V., Vasyukov A. V., Ermakov A. S., Beklemysheva K. A., Kazakov A. O., Novikov A. V., “O chislennom modelirovanii volnovykh protsessov v anizotropnykh sredakh”, DAN, 495:3 (2014), 285–287

[3] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, FIZMATLIT, M., 2001 | MR

[4] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[5] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy (seriya “B”), v. VII-1, Matematicheskoe modelirovanie v nizkotemperaturnoi plazme, ch. 2, Izd-vo “YaNUS–K”, M., 2009, 141–174

[6] Ivanov V. D., Kondaurov V. I., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matematicheskoe modelirovanie, 2:11 (1990), 10–29 | MR | Zbl

[7] Petrov I. B., Tormasov A. G., Kholodov A. S., “Ob ispolzovanii gibridizirovannykh setochno-kharakteristicheskikh skhem dlya chislennogo resheniya trekhmernykh zadach dinamiki deformiruemogo tverdogo tela”, Zhurn. vychisl. matem. i mat. fiziki, 30:8 (1990), 1237–1244 | MR | Zbl

[8] Kvasov I. E., Petrov I. B., “Chislennoe modelirovanie volnovykh protsessov v geologicheskikh sredakh v zadachakh seismorazvedki na vysokoproizvoditelnykh EVM”, Zhurn. vychisl. matem. i mat. fiziki, 52:2 (2012), 330–341 | Zbl

[9] Muratov M. V., Petrov I. B., Sannikov A. V., Favorskaya A. V., “Grid characteristic method on unstructured tetrahedral meshes”, Computational Mathematics and Mathematical Physics, 54:5 (2014), 837–847 | DOI | MR | Zbl

[10] Novatskii V. K., Teoriya uprugosti, Mir, M., 1975 | MR

[11] Shu C. W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, Report No 97-65, ICASE, 1997, 79 pp. | MR

[12] Balsara D. S., Shu C. W., “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy”, J. of Computational Physics, 160 (2000), 405–452 | DOI | MR | Zbl

[13] Titarev V. A., “Neyavnyi chislennyi metod rascheta prostranstvennykh techenii razrezhennogo gaza na nestrukturirovannykh setkakh”, Zhurn. vychisl. matem. i mat. fiziki, 50:10 (2010), 1811–1826 | MR | Zbl

[14] Dumbser M., Kaser M., Titarev V. A., Toro E. F., “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, J. of Computational Physics, 226 (2007), 204–243 | DOI | MR | Zbl

[15] Tsoutsanis P., Titarev V. A., Drikakis D., “WENO schemes on arbitrary mixed-element un-structured meshes in three space dimensions”, J. of Computational Physics, 230 (2011), 1585–1601 | DOI | MR | Zbl

[16] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[17] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zhurn. vychisl. matem. i mat. fiziki, 40:8 (2000), 1206–1220 | MR | Zbl

[18] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 1–5 | MR

[19] Rogov B. V., Mikhailovskaya M. N., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 52:4 (2012), 672–695 | MR | Zbl

[20] Kholodov A. S., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 20:6 (1980), 1601–1620 | MR | Zbl

[21] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 46:9 (2006), 1638–1667 | MR

[22] Petrov I. B., Favorskaya A. V., “Biblioteka po interpolyatsii vysokikh poryadkov na nestrukturirovannykh treugolnykh i tetraedralnykh setkakh”, Zhurn. informatsionnye tekhnologii, 2011, no. 9, 30–32

[23] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR

[24] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR

[25] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1977 | MR