Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_2_a7, author = {A. V. Favorskaya and I. B. Petrov}, title = {The study of increased order grid-characteristic methods on unstructured grids}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {223--233}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/} }
TY - JOUR AU - A. V. Favorskaya AU - I. B. Petrov TI - The study of increased order grid-characteristic methods on unstructured grids JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 223 EP - 233 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/ LA - ru ID - SJVM_2016_19_2_a7 ER -
%0 Journal Article %A A. V. Favorskaya %A I. B. Petrov %T The study of increased order grid-characteristic methods on unstructured grids %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 223-233 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/ %G ru %F SJVM_2016_19_2_a7
A. V. Favorskaya; I. B. Petrov. The study of increased order grid-characteristic methods on unstructured grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 223-233. http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a7/
[1] Sheriff R., Geldart L., Seismorazvedka, Mir, M., 1987
[2] Petrov I. B., Favorskaya A. V., Vasyukov A. V., Ermakov A. S., Beklemysheva K. A., Kazakov A. O., Novikov A. V., “O chislennom modelirovanii volnovykh protsessov v anizotropnykh sredakh”, DAN, 495:3 (2014), 285–287
[3] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, FIZMATLIT, M., 2001 | MR
[4] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR
[5] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy (seriya “B”), v. VII-1, Matematicheskoe modelirovanie v nizkotemperaturnoi plazme, ch. 2, Izd-vo “YaNUS–K”, M., 2009, 141–174
[6] Ivanov V. D., Kondaurov V. I., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matematicheskoe modelirovanie, 2:11 (1990), 10–29 | MR | Zbl
[7] Petrov I. B., Tormasov A. G., Kholodov A. S., “Ob ispolzovanii gibridizirovannykh setochno-kharakteristicheskikh skhem dlya chislennogo resheniya trekhmernykh zadach dinamiki deformiruemogo tverdogo tela”, Zhurn. vychisl. matem. i mat. fiziki, 30:8 (1990), 1237–1244 | MR | Zbl
[8] Kvasov I. E., Petrov I. B., “Chislennoe modelirovanie volnovykh protsessov v geologicheskikh sredakh v zadachakh seismorazvedki na vysokoproizvoditelnykh EVM”, Zhurn. vychisl. matem. i mat. fiziki, 52:2 (2012), 330–341 | Zbl
[9] Muratov M. V., Petrov I. B., Sannikov A. V., Favorskaya A. V., “Grid characteristic method on unstructured tetrahedral meshes”, Computational Mathematics and Mathematical Physics, 54:5 (2014), 837–847 | DOI | MR | Zbl
[10] Novatskii V. K., Teoriya uprugosti, Mir, M., 1975 | MR
[11] Shu C. W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, Report No 97-65, ICASE, 1997, 79 pp. | MR
[12] Balsara D. S., Shu C. W., “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy”, J. of Computational Physics, 160 (2000), 405–452 | DOI | MR | Zbl
[13] Titarev V. A., “Neyavnyi chislennyi metod rascheta prostranstvennykh techenii razrezhennogo gaza na nestrukturirovannykh setkakh”, Zhurn. vychisl. matem. i mat. fiziki, 50:10 (2010), 1811–1826 | MR | Zbl
[14] Dumbser M., Kaser M., Titarev V. A., Toro E. F., “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, J. of Computational Physics, 226 (2007), 204–243 | DOI | MR | Zbl
[15] Tsoutsanis P., Titarev V. A., Drikakis D., “WENO schemes on arbitrary mixed-element un-structured meshes in three space dimensions”, J. of Computational Physics, 230 (2011), 1585–1601 | DOI | MR | Zbl
[16] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR
[17] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zhurn. vychisl. matem. i mat. fiziki, 40:8 (2000), 1206–1220 | MR | Zbl
[18] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 1–5 | MR
[19] Rogov B. V., Mikhailovskaya M. N., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 52:4 (2012), 672–695 | MR | Zbl
[20] Kholodov A. S., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 20:6 (1980), 1601–1620 | MR | Zbl
[21] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zhurn. vychisl. matem. i mat. fiziki, 46:9 (2006), 1638–1667 | MR
[22] Petrov I. B., Favorskaya A. V., “Biblioteka po interpolyatsii vysokikh poryadkov na nestrukturirovannykh treugolnykh i tetraedralnykh setkakh”, Zhurn. informatsionnye tekhnologii, 2011, no. 9, 30–32
[23] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR
[24] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR
[25] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1977 | MR