Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 207-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, approximate analytical and numerical solutions to nonlinear eigenvalue problems arising in the nonlinear fracture mechanics in analysis of stress-strain fields near a crack tip under a mixed mode loading are presented. Asymptotic solutions are obtained by the perturbation method (the small artificial parameter method). The artificial small parameter is a difference between the eigenvalue corresponding to the nonlinear eigenvalue problem and the eigenvalue related to the linear “undisturbed” problem. It is shown that the perturbation technique gives an effective method of solving nonlinear eigenvalue problems in the nonlinear fracture mechanics. Comparison of numerical and asymptotic results for different values of the mixity parameter and hardening exponent shows good agreement. Thus, the perturbation theory technique for studying nonlinear eigenvalue problems is offered and applied to eigenvalue problems arising from the fracture mechanics analysis in the case of a mixed mode loading.
@article{SJVM_2016_19_2_a6,
     author = {L. V. Stepanova and E. M. Yakovleva},
     title = {Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {207--222},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a6/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - E. M. Yakovleva
TI  - Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 207
EP  - 222
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a6/
LA  - ru
ID  - SJVM_2016_19_2_a6
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A E. M. Yakovleva
%T Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 207-222
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a6/
%G ru
%F SJVM_2016_19_2_a6
L. V. Stepanova; E. M. Yakovleva. Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 207-222. http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a6/

[1] Andrianov I., Avreitsevich Ya., Metody asimptoticheskogo analiza i sinteza v nelineinoi dinamike i mekhanike deformiruemogo tverdogo tela, Institut kompyuternykh issledovanii, Izhevsk, 2013 | MR

[2] Wei R. P., Fracture Mechanics. Integration of Mechanics, Materials Science and Chemistry, Cambridge University Press, Cambridge, 2014

[3] Kuna M., Finite Elements in Fracture Mechanics: Theory-Numerics-Applications, Springer, Dordrecht, 2013 | MR | Zbl

[4] A. Ehrlacher, H. Markenscoff (eds.), Duality, symmetry and symmetry lost in solid mechanics, Selected works of H. D. Bui, Presses des Ponts, Paris, 2011

[5] Byui Kh. D., Mekhanika razrusheniya: obratnye zadachi i resheniya, Fizmatlit, M., 2011

[6] Vildeman V. E. i dr., Eksperimentalnye issledovaniya svoistv materiala pri slozhnykh termomekhanicheskikh vozdeistviyakh, Fizmatlit, M., 2012

[7] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, J. Appl. Mechanics, 19 (1952), 526–534

[8] Stepanova L. V., Fedina M. E., “Self-similar solution of a tensile crack problem in a coupled formulation”, J. of Appl. Math. and Mechanics, 72:3 (2008), 360–368 | DOI | Zbl

[9] Stepanova L. V., “Eigenspectra and orders of stress singularity at a mode I crack tip for a power-low medium”, Comptes Rendus Mechanique, 336:1–2 (2008), 232–237 | DOI | Zbl

[10] Sapora A., Carpinteri A., “A finite fracture mechanics approach to V-notched element subjected to mixed-mode loading”, Engineering Fracture Mechanics, 97 (2013), 216–226 | DOI

[11] Weibgraeber P., Becker W., “Finite Fracture Mechanics model for mixed mode fracture in adhesive joints”, Int. J. of Solids and Structures, 50:14 (2013), 2383–2394 | DOI

[12] Stepanova L. V., “Eigenvalue analysis for a crack in a power-law material”, Computational Mathematics and Mathematical Physics, 49:8 (2009), 1332–1347 | DOI | MR | Zbl

[13] Beliakova T. A., Kulagin V. A., “The eigenspectrum approach and T-stress at the mixed-mode crack tip for a stress-state dependent material”, Procedia Materials Science, 3 (2014), 147–152 | DOI

[14] Natarajan S., Song C., Belouettar S., “Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment”, Computer Methods in Applied Mechanics and Engineering, 279 (2014), 86–112 | DOI | MR

[15] Stepanova L. V., Yakovleva E. M., “Mixed-mode loading of the cracked plate under plane stress conditions”, PNRPU Mechanics Bulletin, 2014, no. 3, 129–162

[16] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16 (1968), 1–12 | DOI | Zbl

[17] Hutchinson J. W., “Singular behavior at the end of tensile crack in a hardening material”, J. Mech. Phys. Solids, 16 (1968), 13–31 | DOI | Zbl

[18] Hutchinson J. W., “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16 (1968), 337–342 | DOI

[19] Shlyannikov V. N., Tumanov A. V., “Uprugie parametry smeshannykh form deformirovaniya poluellipticheskoi treschiny pri dvukhosnom nagruzhenii”, Izv. Sarat. universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 10:2 (2010), 73–80

[20] Shlyannikov V. N., Kislova S. Yu., “Parametry smeshannykh form deformirovaniya dlya treschiny v vide matematicheskogo razreza”, Izv. Sarat. universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 9:1 (2009), 77–84

[21] Stepanova L. V., Adylina E. M., “Stress-strain state in the vicinity of a crack tip under mixed loading”, J. of Appl. Mechanics and Technical Physics, 55:5 (2014), 885–895 | DOI | MR | Zbl

[22] J. Carroll, S. Daly (eds.), Proc. of the 2014 Annual Conf. on Experimental and Appl. Mechanics, Fracture, Fatigue, Failure, and Damage Evolution, 5, Springer, Dordrech, 2015

[23] Shih C. F., Elastic-plastic analysis of combined mode crack problems, PhD thesis, Harvard University, Cambridge, 1973

[24] Shih C. F., “Small-scale yielding analysis of mixed mode plane-strain crack problems”, Fracture Analysis, Proc. of the National Symp. on Fracture Mechanics (ASTM STP560), 1974, 187–210

[25] Rahman S., Mohammad E., “Effects of mixed–mode overloading on the mixed-mode I+II fatigue crack growth”, Arch. Appl. Mech., 83:8 (2013), 987–1000 | Zbl

[26] Naife A. Kh., Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR

[27] Anheuser M., Gross D., “Higher order fields at crack and notch tips in power-law materials under longitudinal shear”, Archive of Appl. Mechanics, 64 (1994), 509–518 | DOI | Zbl

[28] Stepanova L. V., Igonin S. A., “Perturbation method for solving the nonlinear eigenvalue problem arising from fatigue crack growth problem in a damaged medium”, Appl. Math. Modelling, 38:14 (2014), 3436–3455 | DOI | MR

[29] Stepanova L. V., Igonin S. A., “Asimptotika polya napryazhenii u vershiny ustalostnoi treschiny v srede s povrezhdennostyu: vychislennyi eksperiment i analiticheskoe reshenie”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 18:2 (2015), 201–217 | DOI | Zbl

[30] Kudryashov N. A., Metody nelineinoi matematicheskoi fiziki, Intellekt, Dolgoprudnyi, 2010

[31] Paulsen W., Asymptotic Analysis and Perturbation Theory, CRC Press, 2013 | MR

[32] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005

[33] Barenblatt G. I., Avtomodelnye yavleniya – analiz razmernostei i skeiling, Intellekt, Dolgoprudnyi, 2009

[34] Yakimov A., Analiticheskii metod resheniya uravnenii matematicheskoi fiziki, Lambert Academic Publishing, 2011

[35] Radhika T. S. L., Iyengar T. K. V., Raja Rani T., Approximate Analytical Methods for Solving Ordinary Differential Equations, CRC Press, 2015 | MR | Zbl