Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 183-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the decomposition method of a three-dimensional computational domain into subdomains, adjoint without overlapping, which is based on a direct approximation of the Poincare-Steklov equation at the conjugation interface, is proposed. With the use of this approach, parallel algorithms and technologies for three-dimensional boundary value problems on quasi-structured grids are presented. The experimental evaluation of the parallelization efficiency on the solution of the model problem on quasi-structured parallelepipedal coordinated and uncoordinated grids is given.
@article{SJVM_2016_19_2_a4,
     author = {V. D. Korneev and V. M. Sveshnikov},
     title = {Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a4/}
}
TY  - JOUR
AU  - V. D. Korneev
AU  - V. M. Sveshnikov
TI  - Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 183
EP  - 194
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a4/
LA  - ru
ID  - SJVM_2016_19_2_a4
ER  - 
%0 Journal Article
%A V. D. Korneev
%A V. M. Sveshnikov
%T Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 183-194
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a4/
%G ru
%F SJVM_2016_19_2_a4
V. D. Korneev; V. M. Sveshnikov. Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 183-194. http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a4/

[1] Agoshkov V., Ovtchinnikov E., “Projection decomposition method”, Math. Models Methods Appl. Sci., 4 (1994), 773–794 | DOI | MR | Zbl

[2] Gervasio P., Ovtchinnikov E., Quarteroni A., “The spectral projection decomposition method for elliptic equations in two dimensions”, SIAM J. in Numer. Analysis, 34:4 (1997), 1616–1639 | DOI | MR | Zbl

[3] Sveshnikov V. M., “Postroenie pryamykh i iteratsionnykh metodov dekompozitsii”, Sib. zhurn. industr. matematiki, 12:3 (2009), 99–109 | MR | Zbl

[4] Sveshnikov V. M., Belyaev D. O., “Postroenie kvazistrukturirovannykh lokalno-modifitsirovannykh setok dlya resheniya zadach silnotochnoi elektroniki”, Vestnik YuUrGU, seriya MMP, 40(299):14 (2012), 130–140 | Zbl

[5] Sveshnikov V. M., Rybdylov B. D., “O rasparallelivanii resheniya kraevykh zadach na kvazistrukturirovannykh setkakh”, Vestnik YuUrGU, seriya VMI, 2:3 (2013), 63–72

[6] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo IVMiMG SO RAN, Novosibirsk, 2001