Optimized mean based second derivative-free families of Chebyshev--Halley type methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 167-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present new interesting fourth-order optimal families of Chebyshev–Halley type methods free from second-order derivatives. In terms of computational cost, each member of the families requires two functions and one first-order derivative evaluation per iteration, so that their efficiency indices are 1.587. It is found by way of illustration that the proposed methods are useful in high precision computing environment. Moreover, it is also observed that larger basins of attraction belong to our methods, whereas the other methods are slow and have darker basins, while some of the methods are too sensitive to the choice of the initial guess.
@article{SJVM_2016_19_2_a3,
     author = {M. Kansal and V. Kanwar and S. Bhatia},
     title = {Optimized mean based second derivative-free families of {Chebyshev--Halley} type methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {167--181},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/}
}
TY  - JOUR
AU  - M. Kansal
AU  - V. Kanwar
AU  - S. Bhatia
TI  - Optimized mean based second derivative-free families of Chebyshev--Halley type methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 167
EP  - 181
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/
LA  - ru
ID  - SJVM_2016_19_2_a3
ER  - 
%0 Journal Article
%A M. Kansal
%A V. Kanwar
%A S. Bhatia
%T Optimized mean based second derivative-free families of Chebyshev--Halley type methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 167-181
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/
%G ru
%F SJVM_2016_19_2_a3
M. Kansal; V. Kanwar; S. Bhatia. Optimized mean based second derivative-free families of Chebyshev--Halley type methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/

[1] Petković M. S., Neta B., Petković L. D., Džunić J., Multipoint Methods for Solving Nonlinear Equations, Elsevier, 2012 | MR

[2] Chun C., Neta B., “Some modification of Newton's method by the method of undetermined coefficients”, Comput. Math. Appl., 56 (2008), 2528–2538 | DOI | MR | Zbl

[3] Kung H. T., Traub J. F., “Optimal order of one-point and multipoint iteration”, J. of the Association for Computing Machinery, 21 (1974), 643–651 | DOI | MR | Zbl

[4] Soleymani F., Sharifi M., Mousavi B. S., “An improvement of Ostrowski's and King's techniques with optimal convergence order eight”, J. Optim. Theory Appl., 153 (2012), 225–236 | DOI | MR | Zbl

[5] Ostrowski A. M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960 | MR | Zbl

[6] Chun C., Lee M. Y., Neta B., Džunić J., “On optimal fourth–order iterative methods free from second derivative and their dynamics”, Appl. Math. Comput., 218 (2012), 6427–6438 | MR | Zbl

[7] King R. F., “A family of fourth order methods for nonlinear equations”, SIAM J. Numer. Anal., 10 (1973), 876–879 | DOI | MR | Zbl

[8] Gutiérrez J. M., Hernández M. A., “A family of Chebyshev–Halley type methods in Banach spaces”, Bull. Austral. Math. Soc., 55 (1997), 113–130 | DOI | MR | Zbl

[9] Hernández M. A., “Second-derivative-free variant of the Chebyshev method for nonlinear equations”, J. Optim. Theory Appl., 104 (2000), 501–515 | DOI | MR | Zbl

[10] Chun C., Ham Y. M., “Some fourth-order modifications of Newton's method”, Appl. Math. Comput., 197 (2008), 654–658 | MR | Zbl

[11] Kou J., “Second-derivative-free variants of Cauchy's method”, Appl. Math. Comput., 190 (2007), 339–344 | MR | Zbl

[12] Scott M., Neta B., Chun C., “Basin attractors for various methods”, Appl. Math. Comput., 218 (2011), 2584–2599 | MR | Zbl

[13] Neta B., Scott M., Chun C., “Basins of attraction for several methods to find simple roots of nonlinear equations”, Appl. Math. Comput., 218 (2012), 10548–10556 | MR | Zbl