Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_2_a3, author = {M. Kansal and V. Kanwar and S. Bhatia}, title = {Optimized mean based second derivative-free families of {Chebyshev--Halley} type methods}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {167--181}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/} }
TY - JOUR AU - M. Kansal AU - V. Kanwar AU - S. Bhatia TI - Optimized mean based second derivative-free families of Chebyshev--Halley type methods JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 167 EP - 181 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/ LA - ru ID - SJVM_2016_19_2_a3 ER -
%0 Journal Article %A M. Kansal %A V. Kanwar %A S. Bhatia %T Optimized mean based second derivative-free families of Chebyshev--Halley type methods %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 167-181 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/ %G ru %F SJVM_2016_19_2_a3
M. Kansal; V. Kanwar; S. Bhatia. Optimized mean based second derivative-free families of Chebyshev--Halley type methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/SJVM_2016_19_2_a3/
[1] Petković M. S., Neta B., Petković L. D., Džunić J., Multipoint Methods for Solving Nonlinear Equations, Elsevier, 2012 | MR
[2] Chun C., Neta B., “Some modification of Newton's method by the method of undetermined coefficients”, Comput. Math. Appl., 56 (2008), 2528–2538 | DOI | MR | Zbl
[3] Kung H. T., Traub J. F., “Optimal order of one-point and multipoint iteration”, J. of the Association for Computing Machinery, 21 (1974), 643–651 | DOI | MR | Zbl
[4] Soleymani F., Sharifi M., Mousavi B. S., “An improvement of Ostrowski's and King's techniques with optimal convergence order eight”, J. Optim. Theory Appl., 153 (2012), 225–236 | DOI | MR | Zbl
[5] Ostrowski A. M., Solution of Equations and Systems of Equations, Academic Press, New York, 1960 | MR | Zbl
[6] Chun C., Lee M. Y., Neta B., Džunić J., “On optimal fourth–order iterative methods free from second derivative and their dynamics”, Appl. Math. Comput., 218 (2012), 6427–6438 | MR | Zbl
[7] King R. F., “A family of fourth order methods for nonlinear equations”, SIAM J. Numer. Anal., 10 (1973), 876–879 | DOI | MR | Zbl
[8] Gutiérrez J. M., Hernández M. A., “A family of Chebyshev–Halley type methods in Banach spaces”, Bull. Austral. Math. Soc., 55 (1997), 113–130 | DOI | MR | Zbl
[9] Hernández M. A., “Second-derivative-free variant of the Chebyshev method for nonlinear equations”, J. Optim. Theory Appl., 104 (2000), 501–515 | DOI | MR | Zbl
[10] Chun C., Ham Y. M., “Some fourth-order modifications of Newton's method”, Appl. Math. Comput., 197 (2008), 654–658 | MR | Zbl
[11] Kou J., “Second-derivative-free variants of Cauchy's method”, Appl. Math. Comput., 190 (2007), 339–344 | MR | Zbl
[12] Scott M., Neta B., Chun C., “Basin attractors for various methods”, Appl. Math. Comput., 218 (2011), 2584–2599 | MR | Zbl
[13] Neta B., Scott M., Chun C., “Basins of attraction for several methods to find simple roots of nonlinear equations”, Appl. Math. Comput., 218 (2012), 10548–10556 | MR | Zbl