Numerical modeling of a~fluid flow in anisotropic fractured porous media
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 61-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of double porosity in the case of an anisotropic fractured porous medium is considered (Dmitriev, Maksimov; 2007). The function of the exchange flow between fractures and porous blocks, which depends on the direction of a flow, is investigated. The flow function is based on the difference between pressure gradients. This feature enables one to take into account anisotropic filtering properties in a more general form. The results of the numerical solution of the model two-dimensional problem are presented. The computational algorithm is based on the finite element spatial approximation and the explicit-implicit temporal approximation.
@article{SJVM_2016_19_1_a6,
     author = {P. N. Vabishchevich and A. V. Grigoriev},
     title = {Numerical modeling of a~fluid flow in anisotropic fractured porous media},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a6/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - A. V. Grigoriev
TI  - Numerical modeling of a~fluid flow in anisotropic fractured porous media
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 61
EP  - 74
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a6/
LA  - ru
ID  - SJVM_2016_19_1_a6
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A A. V. Grigoriev
%T Numerical modeling of a~fluid flow in anisotropic fractured porous media
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 61-74
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a6/
%G ru
%F SJVM_2016_19_1_a6
P. N. Vabishchevich; A. V. Grigoriev. Numerical modeling of a~fluid flow in anisotropic fractured porous media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a6/

[1] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii fil'tratsii odnorodnykh zhidkostey v treshchinovatykh porodakh”, Prikladnaya matematika i mekhanika, 24:5 (1960), 852–864 | MR | Zbl

[2] Maryška J., Sever'yn O., Tauchman M., Tondr D., “Modelling of processes in fractured rock using FEM/FVM on multidimensional domains”, J. of Computational and Applied Mathematics, 215:2 (2008), 495–502 | DOI | MR | Zbl

[3] Loret B., Rizzi E., “Strain localization in fluid-saturated anisotropic elastic-plastic porous media with double porosity”, J. of the Mechanics and Physics of Solids, 47:3 (1999), 503–530 | DOI | MR | Zbl

[4] Bera P., Khalili A., “Double-diffusive natural convection in an anisotropic porous cavity with opposing buoyancy forces: multi-solutions and oscillations”, Int. J. of Heat and Mass Transfer, 45:15 (2002), 3205–3222 | DOI | Zbl

[5] Schoenberg M., Sayers C. M., “Seismic anisotropy of fractured rock”, Geophysics, 60:1 (1995), 204–211 | DOI

[6] Dmitriev N. M., Maksimov V. M., “Models of flow through fractured-porous anisotropic media”, Fluid Dynamics, 42:6 (2007), 937–942 | DOI | MR | Zbl

[7] Basniev K. S., Dmitriev N. M., Maksimov V. M., Podzemnaya gidromekhanika, Nedra, M., 1993

[8] Barenblatt G. I., Entov V. M., Ryzhik V. M., Theory of Fluid Flows Through Natural Rocks, Springer, 2010

[9] Quarteroni A., Valli A., Numerical Approximation of Partial Differential Equations, Springer, 2008 | Zbl

[10] Brenner S. C., Scott L. R., The Mathematical Theory of Finite Element Methods, Springer, 2008 | MR | Zbl

[11] Dupont T., Hoffman J., Johnson C. et al., The FEniCS Project, Technical Report 2003-21, Chalmers Finite Element Centre, Chalmers University of Technology, Goteborg, Sweden, 2003

[12] Langtangen H. P., “A FEniCS tutorial”, Automated solution of differential equations by the finite element method, Springer, 2012, 1–73 | DOI | MR