Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_1_a5, author = {I. A. Blatov and E. V. Kitaeva}, title = {Convergence of the adapting grid method of {Bakhvalov's} type for singularly perturbed boundary value problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {47--59}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a5/} }
TY - JOUR AU - I. A. Blatov AU - E. V. Kitaeva TI - Convergence of the adapting grid method of Bakhvalov's type for singularly perturbed boundary value problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 47 EP - 59 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a5/ LA - ru ID - SJVM_2016_19_1_a5 ER -
%0 Journal Article %A I. A. Blatov %A E. V. Kitaeva %T Convergence of the adapting grid method of Bakhvalov's type for singularly perturbed boundary value problems %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 47-59 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a5/ %G ru %F SJVM_2016_19_1_a5
I. A. Blatov; E. V. Kitaeva. Convergence of the adapting grid method of Bakhvalov's type for singularly perturbed boundary value problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a5/
[1] Natterer F., “Uniform convergence of Galerkin method for splines on highly nonuniform meshes”, Math. Comput., 31 (1977), 457–468 | MR | Zbl
[2] Blatov I. A., Strygin V. V., “On best possible order of convergence estimates in the collocation method and Galerkin's method for singularly perturbed boundary value problems for systems of first order ordinary differential equations”, Math. Comput., 68 (1999), 683–715 | DOI | MR | Zbl
[3] Liseikin V. D., Grid Generation Methods, Springer-Verlag, Berlin, 1999 | MR | Zbl
[4] Gil'manov A. N., Metody adaptivnykh setok v zadachakh gazovoy dinamiki, Nauka, FIZMATLIT, M., 2000 | MR
[5] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmushchennykh kraevykh zadach na lokal'no pereizmel'chaemykh setkakh. Uravnenie konvektsii-diffuzii”, Zhurn. vychisl. matem. i mat. fiziki, 40:5 (2000), 714–725 | MR | Zbl
[6] Shishkin G. I., “Setochnaya approksimatsiya parabolicheskikh uravneniy konvektsii-diffuzii na apriorno adaptiruyushchikhsya setkakh; ravnomerno skhodyashchiesya skhemy”, Zhurn. vychisl. matem. i mat. fiziki, 48:6 (2008), 1014–1033 | MR | Zbl
[7] Blatov I. A., Dobrobog N. V., “Uslovnaya ravnomernaya skhodimost' algoritmov adaptatsii v metode konechnykh elementov dlya singulyarno vozmushchennykh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 50:9 (2010), 1550–1568 | MR | Zbl
[8] Blatov I. A., “O proektsionnom metode dlya singulyarno vozmushchennykh kraevykh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 30:7 (1990), 1031–1044 | MR | Zbl
[9] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl
[10] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[11] Vasil'eva A. B., Butuzov V. F., Asimptoticheskoe razlozhenie resheniy singulyarno vozmushchennykh uravneniy, Nauka, M., 1973 | MR