Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_3_a6, author = {S. V. Solodusha and N. M. Yaparova}, title = {A numerical solution of an inverse boundary value problem of heat conduction using the {Volterra} equations of the first kind}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {327--335}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/} }
TY - JOUR AU - S. V. Solodusha AU - N. M. Yaparova TI - A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 327 EP - 335 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/ LA - ru ID - SJVM_2015_18_3_a6 ER -
%0 Journal Article %A S. V. Solodusha %A N. M. Yaparova %T A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2015 %P 327-335 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/ %G ru %F SJVM_2015_18_3_a6
S. V. Solodusha; N. M. Yaparova. A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 327-335. http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/
[1] Alifanov O. M., Ivanov N. A., Kolesnikov V. A., “Metodika i algoritm opredeleniya temperaturnykh zavisimostej teplofizicheskikh kharakteristik anizotropnykh materialov iz resheniya obratnoj zadachi”, Vestnik Moskovskogo aviatsionnogo instituta, 19:5 (2012), 14–20
[2] Alifanov O. M., Budnik S. A., Nenarokomov A. V., Netelev A. V., “Identifikatsiya matematicheskikh modelej teploperenosa v razlagayushchikhsya materialakh”, Teplovye protsessy v tekhnike, 2011, no. 8, 338–347
[3] Balabanov P. V., Ponomarev S. V., Trofimov A. V., “Matematicheskoe modelirovanie teploperenosa v protsesse khemosorbtsii”, Vestnik TGTU, 14:2 (2008), 334–341
[4] Gamov P. A., Drozin A. D., Dudorov M. V., Roshchin V. E., “Model' rosta nanokristallov v amorfnom splave”, Metally, 2012, no. 6, 101–106
[5] Tovstonog V. A., Borovkova T. V., Eliseev V. N., “Analiz pogreshnostej izmereniya teplovykh potokov pri ispytaniyakh konstruktsij, nagrevaemykh izlucheniem”, Inzhenernyj zhurnal: nauka i innovatsii, 2013, no. 7 http://www.engjournal.ru/catalog/machin/rocket/851.html
[6] Korotkij A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoj zadache teplovoj konvektsii vysokovyazkoj zhidkosti”, Tr. Instituta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 88–97 | MR | Zbl
[7] Yaparova N. M., “Numerical methods for solving a boundary value inverse heat conduction roblem”, Inverse Problems in Science and Engineering, 22:5 (2014), 832–847 | DOI | MR
[8] Brunner H., van der Houwen P. J., The Numerical Solution of Volterra Equations, CWI Monographs, 3, North-Holland Publishing Co., Amsterdam, 1986 | MR | Zbl
[9] Magnitskij N. A., “Ob odnom metode regulyarizatsii uravnenij Vol'terra I roda”, ZhVMiMF, 15:5 (1975), 1317–1323 | MR | Zbl
[10] Denisov A. M., “O priblizhennom reshenii uravneniya Vol'terra I roda”, ZhVMiMF, 15:4 (1975), 1053–1056 | MR | Zbl
[11] Vasin V. V., “Iteratsionnaya regulyarizatsiya monotonnykh operatornykh uravnenij pervogo roda v poluuporyadochennykh $B$-prostranstvakh”, DAN, 341:2 (1995), 151–154 | MR | Zbl
[12] Lavrent'ev M. M., Romanov V. G., Shishatskij S. P., Nekorrektnye zadachi matematicheskoj fiziki i analiza, Nauka, M., 1980 | MR
[13] Bukhgejm A. L., Vvedenie v teoriyu obratnykh zadach, Nauka, Sib. otd-nie, Novosibirsk, 1988 | MR
[14] Apartsin A. S., Bakushinskij A. B., “Priblizhennoe reshenie integral'nykh uravnenij Vol'terra I roda metodom kvadraturnykh summ”, Diff. i integr. uravneniya, 1972, no. 1, 248–258
[15] Vajnikko G. M., Khyamarik U. A., “Samoregulyarizatsiya dlya resheniya nekorrektnykh zadach proektsionnymi metodami”, Modeli i metody issledovaniya operatsij, Nauka, Sib. otd-nie, Novosibirsk, 1988, 157–163 | MR
[16] Grebennikov A. I., “O regulyariziruyushchikh svojstvakh yavnykh approksimiruyushchikh spla jnov”, Metody matem. modelirovaniya i avtomatizirovannaya obrabotka nablyudenij i ikh prilozheniya, MGU, M., 1986, 39–46 | MR
[17] Smirnov V. I., Kurs vysshej matematiki, v. 4, Ch. 1, Nauka, M., 1974 | MR
[18] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR
[19] Solodusha S. V., Yaparova N. M., Numerical solution of the Volterra equations of the first kind that appear in an inverse boundary-value problem of heat conduction, arXiv: 1407.1678
[20] Apartsin A. S., “Diskretizatsionnye metody regulyarizatsii nekotorykh integral'nykh uravnenij I roda”, Metody chislennogo analiza i optimizatsii, Nauka, Sib. otd-nie, Novosibirsk, 1987, 263–297 | MR
[21] Linz P., “Product integration method for Volterra integral equations of the first kind”, BIT, 11 (1971), 413–421 | DOI | MR | Zbl