A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 327-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an inverse boundary value problem of heat conduction. To solve it, we propose a new approach based on the Laplace transform. This approach allows us to confine the original problem to solving the Volterra equations of the first kind. We have developed algorithms of the numerical solution to the resulting integral equations. The algorithms developed are based on the application of the product integration method and the quadrature of middle rectangles. A series of test calculations were performed to test the efficiency of the numerical methods.
@article{SJVM_2015_18_3_a6,
     author = {S. V. Solodusha and N. M. Yaparova},
     title = {A numerical solution of an inverse boundary value problem of heat conduction using the {Volterra} equations of the first kind},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {327--335},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/}
}
TY  - JOUR
AU  - S. V. Solodusha
AU  - N. M. Yaparova
TI  - A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 327
EP  - 335
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/
LA  - ru
ID  - SJVM_2015_18_3_a6
ER  - 
%0 Journal Article
%A S. V. Solodusha
%A N. M. Yaparova
%T A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 327-335
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/
%G ru
%F SJVM_2015_18_3_a6
S. V. Solodusha; N. M. Yaparova. A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 327-335. http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a6/

[1] Alifanov O. M., Ivanov N. A., Kolesnikov V. A., “Metodika i algoritm opredeleniya temperaturnykh zavisimostej teplofizicheskikh kharakteristik anizotropnykh materialov iz resheniya obratnoj zadachi”, Vestnik Moskovskogo aviatsionnogo instituta, 19:5 (2012), 14–20

[2] Alifanov O. M., Budnik S. A., Nenarokomov A. V., Netelev A. V., “Identifikatsiya matematicheskikh modelej teploperenosa v razlagayushchikhsya materialakh”, Teplovye protsessy v tekhnike, 2011, no. 8, 338–347

[3] Balabanov P. V., Ponomarev S. V., Trofimov A. V., “Matematicheskoe modelirovanie teploperenosa v protsesse khemosorbtsii”, Vestnik TGTU, 14:2 (2008), 334–341

[4] Gamov P. A., Drozin A. D., Dudorov M. V., Roshchin V. E., “Model' rosta nanokristallov v amorfnom splave”, Metally, 2012, no. 6, 101–106

[5] Tovstonog V. A., Borovkova T. V., Eliseev V. N., “Analiz pogreshnostej izmereniya teplovykh potokov pri ispytaniyakh konstruktsij, nagrevaemykh izlucheniem”, Inzhenernyj zhurnal: nauka i innovatsii, 2013, no. 7 http://www.engjournal.ru/catalog/machin/rocket/851.html

[6] Korotkij A. I., Kovtunov D. A., “Rekonstruktsiya granichnykh rezhimov v obratnoj zadache teplovoj konvektsii vysokovyazkoj zhidkosti”, Tr. Instituta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 88–97 | MR | Zbl

[7] Yaparova N. M., “Numerical methods for solving a boundary value inverse heat conduction roblem”, Inverse Problems in Science and Engineering, 22:5 (2014), 832–847 | DOI | MR

[8] Brunner H., van der Houwen P. J., The Numerical Solution of Volterra Equations, CWI Monographs, 3, North-Holland Publishing Co., Amsterdam, 1986 | MR | Zbl

[9] Magnitskij N. A., “Ob odnom metode regulyarizatsii uravnenij Vol'terra I roda”, ZhVMiMF, 15:5 (1975), 1317–1323 | MR | Zbl

[10] Denisov A. M., “O priblizhennom reshenii uravneniya Vol'terra I roda”, ZhVMiMF, 15:4 (1975), 1053–1056 | MR | Zbl

[11] Vasin V. V., “Iteratsionnaya regulyarizatsiya monotonnykh operatornykh uravnenij pervogo roda v poluuporyadochennykh $B$-prostranstvakh”, DAN, 341:2 (1995), 151–154 | MR | Zbl

[12] Lavrent'ev M. M., Romanov V. G., Shishatskij S. P., Nekorrektnye zadachi matematicheskoj fiziki i analiza, Nauka, M., 1980 | MR

[13] Bukhgejm A. L., Vvedenie v teoriyu obratnykh zadach, Nauka, Sib. otd-nie, Novosibirsk, 1988 | MR

[14] Apartsin A. S., Bakushinskij A. B., “Priblizhennoe reshenie integral'nykh uravnenij Vol'terra I roda metodom kvadraturnykh summ”, Diff. i integr. uravneniya, 1972, no. 1, 248–258

[15] Vajnikko G. M., Khyamarik U. A., “Samoregulyarizatsiya dlya resheniya nekorrektnykh zadach proektsionnymi metodami”, Modeli i metody issledovaniya operatsij, Nauka, Sib. otd-nie, Novosibirsk, 1988, 157–163 | MR

[16] Grebennikov A. I., “O regulyariziruyushchikh svojstvakh yavnykh approksimiruyushchikh spla jnov”, Metody matem. modelirovaniya i avtomatizirovannaya obrabotka nablyudenij i ikh prilozheniya, MGU, M., 1986, 39–46 | MR

[17] Smirnov V. I., Kurs vysshej matematiki, v. 4, Ch. 1, Nauka, M., 1974 | MR

[18] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR

[19] Solodusha S. V., Yaparova N. M., Numerical solution of the Volterra equations of the first kind that appear in an inverse boundary-value problem of heat conduction, arXiv: 1407.1678

[20] Apartsin A. S., “Diskretizatsionnye metody regulyarizatsii nekotorykh integral'nykh uravnenij I roda”, Metody chislennogo analiza i optimizatsii, Nauka, Sib. otd-nie, Novosibirsk, 1987, 263–297 | MR

[21] Linz P., “Product integration method for Volterra integral equations of the first kind”, BIT, 11 (1971), 413–421 | DOI | MR | Zbl