The weight coefficients in the weighted least squares method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 275-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating parameters of linear mathematical models. It is proved that due to the choice of weights in the least squares method it is possible to obtain solutions by minimizing any penalty functions of a wide class, including those of the Hölder norms. A limitation on a set of solutions resulting from the variation of the weights in the least squares method has been determined. The possibility of the practical use of the established theoretical facts is illustrated by the ecology-mathematical models.
@article{SJVM_2015_18_3_a2,
     author = {I. V. Bychkov and V. I. Zorkaltsev and A. V. Kazazaeva},
     title = {The weight coefficients in the weighted least squares method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {275--288},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a2/}
}
TY  - JOUR
AU  - I. V. Bychkov
AU  - V. I. Zorkaltsev
AU  - A. V. Kazazaeva
TI  - The weight coefficients in the weighted least squares method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 275
EP  - 288
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a2/
LA  - ru
ID  - SJVM_2015_18_3_a2
ER  - 
%0 Journal Article
%A I. V. Bychkov
%A V. I. Zorkaltsev
%A A. V. Kazazaeva
%T The weight coefficients in the weighted least squares method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 275-288
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a2/
%G ru
%F SJVM_2015_18_3_a2
I. V. Bychkov; V. I. Zorkaltsev; A. V. Kazazaeva. The weight coefficients in the weighted least squares method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 275-288. http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a2/

[1] Ajvazyan S. A., Prikladnaya statistika: Osnovy modelirovaniya i pervichnaya obrabotka dannykh, Spravochnoe izd-nie, eds. S. A. Ajvazyan, I. S. Enyukov, L. D. Meshalkin, Finansy i statistika, M., 1983 | MR

[2] Gauss K. F., Izbrannye geodezicheskie sochineniya, Geodezizdat, M., 1957

[3] Dikin I. I., Zorkal'tsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Sib. otd-nie, Novosibirsk, 1980 | MR

[4] Eremin I. I., Mazurov V. D., Astakhov N. N., Nesobstvennye zadachi linejnogo i vypuklogo programmirovaniya, Nauka, M., 1983 | MR

[5] Zorkal'tsev V. I., Metod naimen'shikh kvadratov: geometricheskie svojstva, al'ternativnye podkhody, prilozheniya, eds. E. G. Antsiferov, V. P. Bulatov, VO “Nauka”, Sibirskaya izdatel'skaya firma, Novosibirsk, 1995 | MR

[6] Zorkal'tsev V. I., Mokryj I. V., Kazazaeva A. V., “Modelirovanie pelagicheskogo soobshchestva ozera Bajkal”, Vychislitel'nye tekhnologii, 16:1 (2011), 48–66 | MR | Zbl

[7] Kolmogorov A. I., Teoriya veroyatnosti i matematicheskaya statistika, Nauka, M., 1986 | MR

[8] Linnik Yu. V., Metod naimen'shikh kvadratov i osnovy matematiko-statisticheskoj teorii nablyudenij, Fizmatgiz, M., 1962 | MR

[9] Starikov G. V., Golomyanki Bajkala, Nauka, Sib. otd-nie, Novosibirsk, 1977

[10] Chebotarev A. S., Sposob naimen'shikh kvadratov s osnovami teorii veroyatnosti, Geodezizdat, M., 1958 | MR