Asymptotics of the near crack-tip stress field of a~fatigue growing crack in damaged materials: numerical experiment and analytical solution
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 201-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the asymptotic analysis of the near fatigue growing crack-tip fields in a damaged material is done. The integrity parameter describing the damage accumulation process in the vicinity of a crack tip is incorporated into the constitutive law of the isotropic linear elastic material. The asymptotic solution based on the eigenfunction expansion method is obtained. It is shown that the problem is reduced to the nonlinear eigenvalue problem. The analytical solution of the nonlinear eigenvalue problem is found by the artificial small parameter method. The perturbation theory approach allows us to derive the analytical presentation of the stress and integrity distributions near the crack tip. The technique proposed permits us to find the higher-order terms of the asymptotic expansions of the stress components and the integrity parameter.
@article{SJVM_2015_18_2_a7,
     author = {L. V. Stepanova and S. A. Igonin},
     title = {Asymptotics of the near crack-tip stress field of a~fatigue growing crack in damaged materials: numerical experiment and analytical solution},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--217},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a7/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - S. A. Igonin
TI  - Asymptotics of the near crack-tip stress field of a~fatigue growing crack in damaged materials: numerical experiment and analytical solution
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 201
EP  - 217
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a7/
LA  - ru
ID  - SJVM_2015_18_2_a7
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A S. A. Igonin
%T Asymptotics of the near crack-tip stress field of a~fatigue growing crack in damaged materials: numerical experiment and analytical solution
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 201-217
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a7/
%G ru
%F SJVM_2015_18_2_a7
L. V. Stepanova; S. A. Igonin. Asymptotics of the near crack-tip stress field of a~fatigue growing crack in damaged materials: numerical experiment and analytical solution. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 201-217. http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a7/

[1] Pestrikov V. M., Morozov E. M., Mekhanika razrusheniya, Kurs lektsij, Professiya, SPb., 2012

[2] Murakami S., Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Dordrecht, 2012

[3] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Izd-vo “Samarskij universitet”, Samara, 2006

[4] Shi J., Chopp D., Lua J., Sukumar N., Belytschko T., “Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions”, Engineering Fracture Mechanics, 77 (2010), 2840–2863 | DOI

[5] Brighenti R., Carpinteri A., Corbari N., “Damage mechanics and Paris regime in fatigue life assessment of metals”, Int. J. of Pressure Vessels and Piping, 104 (2013), 57–68 | DOI

[6] Si Dzh., “Mezomekhanika, ponyatie segmentatsii i mul'tiskejlingovyj podkhod: nano-mikro-makro”, Fizicheskaya mezomekhanika (Novosibirsk), 11:3 (2008), 5–18

[7] Stepanova L. V., “Analiz sobstvennykh znachenij v zadache o treshchine v materiale so stepennym opredelyayushchim zakonom”, Zhurn. vychisl. matem. i mat. fiziki, 49:8 (2009), 1399–1415 | MR | Zbl

[8] Stepanova L. V., “Utochnennyj raschet napryazhenno-deformirovannogo sostoyaniya u vershiny treshchiny v usloviyakh tsiklicheskogo nagruzheniya v srede s povrezhdennost'yu”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchn. ser., 2011, no. 83, 105–115

[9] Hello G., Tahar M. B., Roelandt J. M., “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, Int. J. of Solids and Structures, 49:3–4 (2012), 556–566 | DOI

[10] Li J., Recho N., Methodes Asymptotiques en Mecanique de la Rupture, Hermes Science Publications, Paris, 2002

[11] Stepanova L. V., “O sobstvennykh znacheniyakh v zadache o treshchine antiploskogo sdviga v materiale so stepennymi opredelyayushchimi uravneniyami”, Prikladnaya mekh. i tekhn. fizika (Novosibirsk), 49:1(287) (2008), 173–180 | Zbl

[12] Zhao J., Zhang X., “The asymptotic study of fatigue crack growth based on damage mechanics”, Engineering Fracture Mechanics, 50:1 (1995), 131–141 | DOI

[13] Andrianov I., Avrejtsevich Ya., Metody asimptoticheskogo analiza i sinteza v nelinejnoj dinamike i mekhanike deformiruemogo tverdogo tela, Izd-vo Instituta komp'yuternykh issledovanij, Izhevsk, 2013 | MR

[14] Andrianov I., Awrejcewicz J., Olevskyy V., “Applications of 2D Padé approximants in nonlinear shell theory: stability calculation and experimental justification”, Nonlinearity, Bifurcation and Chaos – Theory and Application, eds. J. Awrejcewicz, P. Hagedorn, InTech, Rijecka, 2012, 12–26

[15] Bol'shakov V. I., Andrianov I. V., Danishevskij V. V., Asimptoticheskie metody rascheta kompozitsionnykh materialov s uchetom vnutrennej struktury, Porogi, Dnepropetrovsk, 2008

[16] Stepanova L. V., Adylina E. M., “Asimptoticheskie metody nelinejnoj mekhaniki razrusheniya: rezul'taty, sovremennoe sostoyanie i perspektivy”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fiz.-mat. nauki, 2013, no. 2(31), 156–168 | DOI