On the stability of some flux splitting schemes
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 135-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the stability of some splitting schemes approximating the equations for a heat flux, obtained by a mixed finite element method. For the two-dimensional problem, the splitting scheme is based on the alternating direction method, and for the three-dimensional problem the splitting scheme is based on the Douglas–Gunn scheme.
@article{SJVM_2015_18_2_a2,
     author = {K. V. Voronin and Yu. M. Laevsky},
     title = {On the stability of some flux splitting schemes},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {135--145},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a2/}
}
TY  - JOUR
AU  - K. V. Voronin
AU  - Yu. M. Laevsky
TI  - On the stability of some flux splitting schemes
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 135
EP  - 145
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a2/
LA  - ru
ID  - SJVM_2015_18_2_a2
ER  - 
%0 Journal Article
%A K. V. Voronin
%A Yu. M. Laevsky
%T On the stability of some flux splitting schemes
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 135-145
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a2/
%G ru
%F SJVM_2015_18_2_a2
K. V. Voronin; Yu. M. Laevsky. On the stability of some flux splitting schemes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 135-145. http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a2/

[1] Voronin K. V., Laevskij Yu. M., “Ob odnom podkhode k postroeniyu potokovykh skhem rasshchepleniya v smeshannom metode konechnykh elementov”, Matematicheskoe modelirovanie, 26:12 (2014), 33–47

[2] Gulin A. V., “Ustojchivost' nelokal'nykh raznostnykh skhem v podprostranstve”, Diff. uravneniya, 48:7 (2012), 956–965 | MR | Zbl

[3] Arbogast T., Huang C.-S., Yang S.-M., “Improved accuracy for alternating-direction methods for parabolic equations based on regular and mixed finite elements”, Mathematical Models and Methods in Applied Sciences, 17:8 (2007), 1279–1305 | DOI | MR | Zbl

[4] Vabishchevich P. N., “Potokovye skhemy rasshchepleniya dlya parabolicheskikh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 52:8 (2012), 1415–1425

[5] Voronin K. V., Laevskij Yu. M., “Skhemy rasshchepleniya v smeshannom metode konechnykh elementov resheniya zadach teploperenosa”, Matematicheskoe modelirovanie, 24:8 (2012), 109–120 | MR | Zbl

[6] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New-York, 1991 | MR | Zbl

[7] Samarskij A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR

[8] Douglas J., Gunn J. E., “A general formulation of alternating direction methods”, Numerische Mathematik, 6 (1964), 428–453 | DOI | MR | Zbl