Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_2_a2, author = {K. V. Voronin and Yu. M. Laevsky}, title = {On the stability of some flux splitting schemes}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {135--145}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a2/} }
K. V. Voronin; Yu. M. Laevsky. On the stability of some flux splitting schemes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 135-145. http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a2/
[1] Voronin K. V., Laevskij Yu. M., “Ob odnom podkhode k postroeniyu potokovykh skhem rasshchepleniya v smeshannom metode konechnykh elementov”, Matematicheskoe modelirovanie, 26:12 (2014), 33–47
[2] Gulin A. V., “Ustojchivost' nelokal'nykh raznostnykh skhem v podprostranstve”, Diff. uravneniya, 48:7 (2012), 956–965 | MR | Zbl
[3] Arbogast T., Huang C.-S., Yang S.-M., “Improved accuracy for alternating-direction methods for parabolic equations based on regular and mixed finite elements”, Mathematical Models and Methods in Applied Sciences, 17:8 (2007), 1279–1305 | DOI | MR | Zbl
[4] Vabishchevich P. N., “Potokovye skhemy rasshchepleniya dlya parabolicheskikh zadach”, Zhurn. vychisl. matem. i mat. fiziki, 52:8 (2012), 1415–1425
[5] Voronin K. V., Laevskij Yu. M., “Skhemy rasshchepleniya v smeshannom metode konechnykh elementov resheniya zadach teploperenosa”, Matematicheskoe modelirovanie, 24:8 (2012), 109–120 | MR | Zbl
[6] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New-York, 1991 | MR | Zbl
[7] Samarskij A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR
[8] Douglas J., Gunn J. E., “A general formulation of alternating direction methods”, Numerische Mathematik, 6 (1964), 428–453 | DOI | MR | Zbl