Methods of identifying a~parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 107-120

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a regular iterative method of identifying a numerical parameter in the kernel of the integral equation of the first kind of the convolution type. It is shown that an unambiguous identification of the parameter is possible when an exact solution has discontinuities of the first kind. The convergence theorem is proved, and an example of the equation with a parameter, for which the method constructed is applicable, is given.
@article{SJVM_2015_18_2_a0,
     author = {T. V. Antonova},
     title = {Methods of identifying a~parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {107--120},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a0/}
}
TY  - JOUR
AU  - T. V. Antonova
TI  - Methods of identifying a~parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 107
EP  - 120
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a0/
LA  - ru
ID  - SJVM_2015_18_2_a0
ER  - 
%0 Journal Article
%A T. V. Antonova
%T Methods of identifying a~parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 107-120
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a0/
%G ru
%F SJVM_2015_18_2_a0
T. V. Antonova. Methods of identifying a~parameter in the kernel of the first kind equation of the convolution type on the class of functions with discontinuities. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 107-120. http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a0/