Approximate solution of large systems of equations with multi-dimensional Toeplitz matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 1, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions using the inverse operator and its form in the truncated two-dimensional convolution operators on sets with smooth boundaries are known. The presence of the corner points adds complexity to the task. The equations with multi-dimensional convolution operators on polyhedra is considered. The approximate method for them is proposed, and estimates for the errors are obtained. The possibility of approximation solutions of these equations with multi-dimensional cyclic matrices is also investigated.
@article{SJVM_2015_18_1_a4,
     author = {A. V. Kozak and D. I. Khanin},
     title = {Approximate solution of large systems of equations with multi-dimensional {Toeplitz} matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a4/}
}
TY  - JOUR
AU  - A. V. Kozak
AU  - D. I. Khanin
TI  - Approximate solution of large systems of equations with multi-dimensional Toeplitz matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 55
EP  - 64
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a4/
LA  - ru
ID  - SJVM_2015_18_1_a4
ER  - 
%0 Journal Article
%A A. V. Kozak
%A D. I. Khanin
%T Approximate solution of large systems of equations with multi-dimensional Toeplitz matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 55-64
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a4/
%G ru
%F SJVM_2015_18_1_a4
A. V. Kozak; D. I. Khanin. Approximate solution of large systems of equations with multi-dimensional Toeplitz matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 1, pp. 55-64. http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a4/

[1] Voevodin V. V., Tyrtyshnikov E. E., Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl

[2] Tyrtyshnikov E. E., Teplitsevy matritsy, nekotorye ikh analogi i prilozheniya, OVM AN SSSR, M., 1989 | MR

[3] Bottcher A., Silbermann B., Introduction to Large Truncated Toeplitz Matrices, Springer-Verlag, USA, New York, 1999 | MR | Zbl

[4] Bottcher A., Grudsky S. M., Spectral Properties of Banded Toeplitz Matrices, SIAM, USA, PA, Philadelphia, 2005 | MR | Zbl

[5] Bottcher A., Silbermann B., Analysis of Toeplitz Operators, Springer Monographs in Mathematics, 2nd ed., Springer-Verlag, Berlin, 2006 | MR | Zbl

[6] Olshevsky V., Oseledets I. V., Tyrtyshnikov E. E., “Superfast inversion of two-level Toeplitz matrices using Newton iteration and tensor-displacement structure”, Operator Theory: Advances and Applications, 179 (2008), 229–240 | DOI | MR | Zbl

[7] Chan R. H.-F., Jin X.-Q., An Introduction to Iterative Toeplitz Solvers, SIAM, USA, PA, Philadelphia, 2007 | MR

[8] Fiorentino G., Serra S., “Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions”, SIAM J. Sci. Comp., 17:5 (1996), 1068–1081 | DOI | MR | Zbl

[9] Gallivan K. A., Thirumalai S., Van Dooren P., Vermaut V., “High performance algorithms for Toeplitz and block Toeplitz matrices”, Linear Algebra Appl., 241–243 (1996), 343–388 | DOI | MR | Zbl

[10] Kozak A. V., Simonenko I. B., “Proektsionnye metody resheniya mnogomernykh diskretnykh uravnenii v svertkakh”, Sibirskii matematicheskii zhurnal, 21:2 (1980), 119–127 | MR | Zbl

[11] Malyshev V. A., Sluchainye bluzhdaniya. Uravneniya Vinera–Khopfa v chetverti ploskosti. Avtomorfizmy Galua, Izd-vo MGU, M., 1970 | MR

[12] Kozak A. V., “Lokalnyi printsip v teorii proektsionnykh metodov”, Dokl. AN SSSR, 212:6 (1973), 1287–1289 | MR | Zbl

[13] Simonenko I. B., “O mnogomernykh diskretnykh svertkakh”, Matem. issled. (Kishinev), 3:1(7) (1968), 108–122 | MR | Zbl

[14] Grudsky S. M., Kozak A. V., “On the convergence speed of the norms of the inverses of truncated Toeplitz operators”, Integra-Differential Equations Applications, Rostov-on-Don University Press, Rostov-on-Don, 1995, 45–55

[15] Bottcher A., Grudsky S., Kozak A., Silbermann B., “Norms of large Toeplitz band matrices”, SIAM J. Matrix Anal. Appl., 21:2 (1999), 547–561 | DOI | MR

[16] Bottcher A., Grudsky S., Kozak A., Silbermann B., “Convergence speed estimates for the norms of the inverses of large truncated Toeplitz matrices”, Calcolo, 36:2 (1999), 103–122 | DOI | MR | Zbl

[17] Bottcher A., Grudsky S., Kozak A., “On the distance of a large Toeplitz band matrix to the nearest singular matrix”, Oper. Theory: Adv. Appl., 135 (2002), 101–106 | MR | Zbl