Computing of optimal inertial control with a~linear system
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computing of time-optimal inertial control amounts to solving the three problems: 1) computing of optimal control on the assumption that the control is without inertia; 2) finding the optimal switching time of the control; 3) calculating of the error induced by the time lag of the control followed by correcting the control time and switching moments. Characteristics of the problems are considered and methods of their solution are given. A way of assignment of initial approximation is presented. A computational algorithm, results of modeling and numerical computations are performed.
@article{SJVM_2015_18_1_a0,
     author = {V. M. Aleksandrov},
     title = {Computing of optimal inertial control with a~linear system},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a0/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Computing of optimal inertial control with a~linear system
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 1
EP  - 13
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a0/
LA  - ru
ID  - SJVM_2015_18_1_a0
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Computing of optimal inertial control with a~linear system
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 1-13
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a0/
%G ru
%F SJVM_2015_18_1_a0
V. M. Aleksandrov. Computing of optimal inertial control with a~linear system. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a0/

[1] Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Pontryagin L. S., “Printsip maksimuma v teorii optimalnykh protsessov”, Tr. Pervogo kongressa Mezhdunarodnoi federatsii po avtomaticheskomu upravleniyu, Izd-vo AN SSSR, M., 1960, 68–83

[2] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976

[3] Gabasov R., Kirillova F. M., Pavlenok N. S., “Sintez optimalnykh obratnykh svyazei v klasse inertsionnykh upravlenii”, Avtomatika i telemekhanika, 2003, no. 2, 22–49 | MR | Zbl

[4] Matyukhin V. I., “Upravlyaemost mekhanicheskikh sistem pri uchete dinamiki privodov”, Avtomatika i telemekhanika, 2005, no. 12, 75–92 | MR | Zbl

[5] Aleksandrov V. M., “Vychislenie optimalnogo upravleniya v realnom vremeni”, Zhurn. vychisl. matem. i mat. fiziki, 52:10 (2012), 1778–1800 | Zbl

[6] Aleksandrov V. M., “Optimalnoe po bystrodeistviyu pozitsionno-programmnoe upravlenie lineinymi dinamicheskimi sistemami”, Sibirskie elektronnye matematicheskie izvestiya, 6 (2009), 385–439 | MR | Zbl

[7] Aleksandrov V. M., “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 39:9 (1999), 1464–1478 | MR | Zbl

[8] Aleksandrov V. M., “Postroenie approksimiruyuschei konstruktsii dlya vychisleniya i realizatsii optimalnogo upravleniya v realnom vremeni”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 15:1 (2012), 1–19 | Zbl

[9] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurn. vychisl. matem. i mat. fiziki, 38:6 (1998), 918–931 | MR | Zbl

[10] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1976 | MR