Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_4_a7, author = {V. V. Smelov}, title = {A network version of the non-standard trigonometric basis and its advantages with respect to a~similar polynomial basis}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {399--409}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a7/} }
TY - JOUR AU - V. V. Smelov TI - A network version of the non-standard trigonometric basis and its advantages with respect to a~similar polynomial basis JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 399 EP - 409 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a7/ LA - ru ID - SJVM_2014_17_4_a7 ER -
%0 Journal Article %A V. V. Smelov %T A network version of the non-standard trigonometric basis and its advantages with respect to a~similar polynomial basis %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 399-409 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a7/ %G ru %F SJVM_2014_17_4_a7
V. V. Smelov. A network version of the non-standard trigonometric basis and its advantages with respect to a~similar polynomial basis. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 399-409. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a7/
[1] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1981 | MR
[2] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000
[3] Smelov V. V., “O predstavlenii kusochno-gladkikh funktsii bystroskhodyaschimisya trigonometricheskimi ryadami”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 2:4 (1999), 385–394 | Zbl
[4] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[5] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl
[6] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR
[7] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, GITTL, M.–L., 1947
[9] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[10] Glesston S., Edlund M., Osnovy teorii yadernykh reaktorov, Izd-vo inostrannoi literatury, M., 1954
[11] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR
[12] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR
[13] Smelov V. V., “Ob obobschennom reshenii dvumernoi ellipticheskoi zadachi s kusochno-postoyannymi koeffitsientami na osnove rasschepleniya differentsialnogo operatora i ispolzovaniya spetsificheskikh bazisnykh funktsii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 6:1 (2003), 59–72 | Zbl