On the full rank interval matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 289-304

Voir la notice de l'article provenant de la source Math-Net.Ru

For interval matrices, the paper considers the problem of determining whether a matrix has a full rank. We propose the full rank criterion that relies on the search for diagonal dominance as well as criteria based on pseudoinversion of the midpoint matrix and comparison of the midpoint and the radius matrices for the interval matrix under study.
@article{SJVM_2014_17_3_a5,
     author = {S. P. Shary},
     title = {On the full rank interval matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {289--304},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/}
}
TY  - JOUR
AU  - S. P. Shary
TI  - On the full rank interval matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 289
EP  - 304
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/
LA  - ru
ID  - SJVM_2014_17_3_a5
ER  - 
%0 Journal Article
%A S. P. Shary
%T On the full rank interval matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 289-304
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/
%G ru
%F SJVM_2014_17_3_a5
S. P. Shary. On the full rank interval matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 289-304. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/