On the full rank interval matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 289-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

For interval matrices, the paper considers the problem of determining whether a matrix has a full rank. We propose the full rank criterion that relies on the search for diagonal dominance as well as criteria based on pseudoinversion of the midpoint matrix and comparison of the midpoint and the radius matrices for the interval matrix under study.
@article{SJVM_2014_17_3_a5,
     author = {S. P. Shary},
     title = {On the full rank interval matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {289--304},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/}
}
TY  - JOUR
AU  - S. P. Shary
TI  - On the full rank interval matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 289
EP  - 304
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/
LA  - ru
ID  - SJVM_2014_17_3_a5
ER  - 
%0 Journal Article
%A S. P. Shary
%T On the full rank interval matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 289-304
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/
%G ru
%F SJVM_2014_17_3_a5
S. P. Shary. On the full rank interval matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 289-304. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a5/

[1] Voevodin V. V., Voevodin Vl. V., Entsiklopediya lineinoi algebry. Elektronnaya sistema LINEAL, BKhV, SPb., 2006

[2] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[3] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2010

[4] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[5] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001

[6] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[7] Erokhin V. I., “Optimalnaya matrichnaya korrektsiya i regulyarizatsiya nesovmestnykh lineinykh modelei”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 9:2 (2002), 41–77 | MR | Zbl

[8] Erokhin V. I., “Neobkhodimye i dostatochnye usloviya nevyrozhdennosti intervalnykh matrits”, Mezhdunar. konf. po vychisl. Matematike MKVM–2004, Rabochie soveschaniya, eds. Yu. I. Shokin i dr., Izd-vo IVMiMG SO RAN, Novosibirsk, 2004, 193–200

[9] Kalmykov S. A., Shokin Yu. I., Yuldashev Z. Kh., Metody intervalnogo analiza, Nauka, Novosibirsk, 1986 | MR | Zbl

[10] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR

[11] Rodionova O. E., Intervalnyi metod obrabotki rezultatov mnogokanalnykh eksperimentov, Dis. $\dots$ d-ra fiz.-mat. nauk, Institut fizicheskoi khimii RAN, M., 2008

[12] M. Fidler, I. Nedoma, Ya. Ramik, I. Ron, K. Tsimmermann (red.), Zadachi lineinoi optimizatsii s netochnymi dannymi, Izd-vo RKhD, M.–Izhevsk, 2008

[13] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[14] Sharyi S. P., Konechnomernyi intervalnyi analiz, Elektronnaya kniga, URL: , Institut vychislitelnykh tekhnologii SO RAN, Novosibirsk, 2013 http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf

[15] Sharyi S. P., “Razreshimost intervalnykh lineinykh uravnenii i analiz dannykh s neopredelënnostyami”, Avtomatika i Telemekhanika, 2012, no. 2, 111–125

[16] Berman A., Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979 | MR | Zbl

[17] Naimark L., Zeheb E., “An extension of Levy–Desplanque theorem and some stability conditions for matrices with uncertain entries”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44:2 (1997), 167–170 | DOI | MR | Zbl

[18] Nemirovski A., “Several NP-hard problems arising in robust stability”, Mathematics of Control Signals and Systems, 6:2 (1993), 99–105 | DOI | MR | Zbl

[19] Neumaier A., Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[20] Poljak S., Rohn J., “Checking robust nonsingularity is NP-hard”, Mathematics of Control Signals and Systems, 6:1 (1993), 1–9 | DOI | MR | Zbl

[21] Rex G., Rohn J., “Sufficient conditions for regularity and singularity of interval matrices”, SIAM J. Matrix Anal. Appl., 20:2 (1999), 437–445 | DOI | MR

[22] Rohn J., “Enclosing solutions of overdetermined systems of linear interval equations”, Reliable Computing, 2:2 (1996), 167–171 | DOI | MR | Zbl

[23] Rohn J., A Handbook of Results on Interval Linear Problems, E-book, URL: , Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, 2012 http://www.nsc.ru/interval/Library/InteBooks/!handbook.pdf

[24] Rump S. M., “Verification methods for dense and sparse systems of equations”, Topics in Validated Numerics, ed. J. Herzberger, Elsevier, Amsterdam, 1994, 63–135 | MR | Zbl

[25] Scilab: The Free Platform for Numerical Computation, E-resource, URL: http://www.scilab.org