The Runge--Kutta/WENO method for solving equations for small-amplitude wave propagation in a~saturated porous medium
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 259-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

A high-accuracy Runge–Kutta/WENO method up to fourth order with respect to time and fifth order with respect to space is developed for the numerical modeling of the small-amplitude wave propagation in a steady fluid-saturated porous medium. The system of governing equations is derived from the general thermodynamically compatible model of a compressible fluid flow through a saturated elastic porous medium, which is described by the hyperbolic system of conservation laws with allowance for finite deformations of the medium. The results of numerical solution of one- and two-dimensional wavefields demonstrate efficiency of the method developed.
@article{SJVM_2014_17_3_a3,
     author = {A. S. Romankov and E. I. Romenski},
     title = {The {Runge--Kutta/WENO} method for solving equations for small-amplitude wave propagation in a~saturated porous medium},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/}
}
TY  - JOUR
AU  - A. S. Romankov
AU  - E. I. Romenski
TI  - The Runge--Kutta/WENO method for solving equations for small-amplitude wave propagation in a~saturated porous medium
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 259
EP  - 271
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/
LA  - ru
ID  - SJVM_2014_17_3_a3
ER  - 
%0 Journal Article
%A A. S. Romankov
%A E. I. Romenski
%T The Runge--Kutta/WENO method for solving equations for small-amplitude wave propagation in a~saturated porous medium
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 259-271
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/
%G ru
%F SJVM_2014_17_3_a3
A. S. Romankov; E. I. Romenski. The Runge--Kutta/WENO method for solving equations for small-amplitude wave propagation in a~saturated porous medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 259-271. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/

[1] Romenskii E. I., “Termodinamicheski soglasovannaya sistema zakonov sokhraneniya techeniya szhimaemoi zhidkosti v poristoi uprugoi srede”, Sib. zhurn. industr. matem., 14:4 (2011), 86–97 | MR

[2] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnoi sredy i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998 | Zbl

[3] Dumbser M., Zanotti O., Hidalgo A., Balsara D. S., “ADER-WENO finite volume schemes with space-time adaptive mesh refinement”, J. Comput. Physics, 248:1 (2013), 257–286 | DOI | MR

[4] Dmitriev M. N., Romenskii E. I., “WENO/Runge–Kutta metod vysokoi tochnosti dlya modelirovaniya uprugikh voln”, Ufimsk. matem. zhurn., 2:1 (2010), 59–70 | Zbl

[5] Spiteri R. J., Ruuth S. J., “A new class of optimal high-order strong-stability preserving time discretization methods”, SIAM J. Numer. Anal., 40:2 (2002), 469–491 | DOI | MR | Zbl

[6] Gottlieb S., “On high order strong stability preserving Runge–Kutta and multi step time discretizations”, J. of Scientific Computing, 25:1–2 (2005), 105–128 | MR | Zbl

[7] Shu C. W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, NASA/CR-97-206253, ICASE Report No 97-65, 1997 | MR

[8] Dorovskii V. N., Romenskii E. I., Perepechko Yu. V., Fedorov A. I., “Rezonansnyi metod izmereniya pronitsaemosti gornykh porod”, Geologiya i Geofizika, 52:7 (2011), 950–961