Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_3_a3, author = {A. S. Romankov and E. I. Romenski}, title = {The {Runge--Kutta/WENO} method for solving equations for small-amplitude wave propagation in a~saturated porous medium}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {259--271}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/} }
TY - JOUR AU - A. S. Romankov AU - E. I. Romenski TI - The Runge--Kutta/WENO method for solving equations for small-amplitude wave propagation in a~saturated porous medium JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 259 EP - 271 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/ LA - ru ID - SJVM_2014_17_3_a3 ER -
%0 Journal Article %A A. S. Romankov %A E. I. Romenski %T The Runge--Kutta/WENO method for solving equations for small-amplitude wave propagation in a~saturated porous medium %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 259-271 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/ %G ru %F SJVM_2014_17_3_a3
A. S. Romankov; E. I. Romenski. The Runge--Kutta/WENO method for solving equations for small-amplitude wave propagation in a~saturated porous medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 259-271. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a3/
[1] Romenskii E. I., “Termodinamicheski soglasovannaya sistema zakonov sokhraneniya techeniya szhimaemoi zhidkosti v poristoi uprugoi srede”, Sib. zhurn. industr. matem., 14:4 (2011), 86–97 | MR
[2] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnoi sredy i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998 | Zbl
[3] Dumbser M., Zanotti O., Hidalgo A., Balsara D. S., “ADER-WENO finite volume schemes with space-time adaptive mesh refinement”, J. Comput. Physics, 248:1 (2013), 257–286 | DOI | MR
[4] Dmitriev M. N., Romenskii E. I., “WENO/Runge–Kutta metod vysokoi tochnosti dlya modelirovaniya uprugikh voln”, Ufimsk. matem. zhurn., 2:1 (2010), 59–70 | Zbl
[5] Spiteri R. J., Ruuth S. J., “A new class of optimal high-order strong-stability preserving time discretization methods”, SIAM J. Numer. Anal., 40:2 (2002), 469–491 | DOI | MR | Zbl
[6] Gottlieb S., “On high order strong stability preserving Runge–Kutta and multi step time discretizations”, J. of Scientific Computing, 25:1–2 (2005), 105–128 | MR | Zbl
[7] Shu C. W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, NASA/CR-97-206253, ICASE Report No 97-65, 1997 | MR
[8] Dorovskii V. N., Romenskii E. I., Perepechko Yu. V., Fedorov A. I., “Rezonansnyi metod izmereniya pronitsaemosti gornykh porod”, Geologiya i Geofizika, 52:7 (2011), 950–961