Numerical-analytical modeling of wave fields for complex subsurface geometries and structures
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 163-176

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose an analytical method of modeling seismic wave fields for a wide range of geophysical media: elastic, non-elastic, anisotropic, anisotropic-non-elastic, porous, random-inhomogeneous, etc. for super-remote (far) distances. As finite difference approximations are not used, there is no grid dispersion when computing wave fields for arbitrary media models and observation points. The analytical solution representation in the spectral domain makes possible to carry out the analysis of a wave field in parts, specifically, to obtain the primary waves. Based on the developed program of computing the wave fields, we have carried out the simulation of water waves and seismic “ringing” on the Moon. The monotone displacement resonant to the lower frequency area with increasing the recording distance has been explained. Such a displacement was detected in experiments with a seismic vibrator.
@article{SJVM_2014_17_2_a6,
     author = {B. G. Mikhailenko and A. G. Fatyanov},
     title = {Numerical-analytical modeling of wave fields for complex subsurface geometries and structures},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a6/}
}
TY  - JOUR
AU  - B. G. Mikhailenko
AU  - A. G. Fatyanov
TI  - Numerical-analytical modeling of wave fields for complex subsurface geometries and structures
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 163
EP  - 176
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a6/
LA  - ru
ID  - SJVM_2014_17_2_a6
ER  - 
%0 Journal Article
%A B. G. Mikhailenko
%A A. G. Fatyanov
%T Numerical-analytical modeling of wave fields for complex subsurface geometries and structures
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 163-176
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a6/
%G ru
%F SJVM_2014_17_2_a6
B. G. Mikhailenko; A. G. Fatyanov. Numerical-analytical modeling of wave fields for complex subsurface geometries and structures. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 163-176. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a6/