On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 111-124

Voir la notice de l'article provenant de la source Math-Net.Ru

Explicit formulas for calculating eigenvalues of the Hankel circulants, Hankel skew-circulants, $(T+H)$-circulants, and $(T+H)$-skew-circulants are obtained. It is shown that if $\phi\ne\pm1$, then the set of matrices that can be represented as sums of a Toeplitz $\phi$-circulant and a Hankel $\phi$-circulant is not an algebra.
@article{SJVM_2014_17_2_a2,
     author = {A. K. Abdikalykov and Kh. D. Ikramov and V. N. Chugunov},
     title = {On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a2/}
}
TY  - JOUR
AU  - A. K. Abdikalykov
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 111
EP  - 124
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a2/
LA  - ru
ID  - SJVM_2014_17_2_a2
ER  - 
%0 Journal Article
%A A. K. Abdikalykov
%A Kh. D. Ikramov
%A V. N. Chugunov
%T On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 111-124
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a2/
%G ru
%F SJVM_2014_17_2_a2
A. K. Abdikalykov; Kh. D. Ikramov; V. N. Chugunov. On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 111-124. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a2/